11,761 research outputs found

    Interplay between classical magnetic moments and superconductivity in quantum one-dimensional conductors: toward a self-sustained topological Majorana phase

    Full text link
    We study a one-dimensional (1D) interacting electronic liquid coupled to a 1D array of classical magnetic moments and to a superconductor. We show that at low energy and temperature the magnetic moments and the electrons become strongly entangled and that a magnetic spiral structure emerges without any adjustable parameters. For strong enough coupling between the two, the 1D electronic liquid is driven into a topological superconducting phase supporting Majorana fermions without any fine-tuning of external parameters. Our analysis applies at low enough temperature to a quantum wire in proximity of a superconductor when the hyperfine interaction between electrons and nuclear spins is taken into account or to a chain of magnetic adatoms adsorbed on a superconducting surface.Comment: 7 pages, 2 figures, final versio

    Splitting electronic spins with a Kondo double dot device

    Full text link
    We present a simple device made of two small capacitively coupled quantum dots in parallel. This set-up can be used as an efficient "Stern-Gerlach" spin filter, able to simultaneously produce, from a normal metallic lead, two oppositely spin-polarized currents when submitted to a local magnetic field. Our proposal is based on the realization of a Kondo effect where spin and orbital degrees of freedom are entangled, allowing a spatial separation between the two spin polarized currents. In the low temperature Kondo regime, the efficiency is very high and the device conductance reaches the unitary limit, e2h\frac{e^2}{h} per spin branch.Comment: 3 pages, 2 figure

    Nuclear magnetism and electron order in interacting one-dimensional conductors

    Full text link
    The interaction between localized magnetic moments and the electrons of a one-dimensional conductor can lead to an ordered phase in which the magnetic moments and the electrons are tightly bound to each other. We show here that this occurs when a lattice of nuclear spins is embedded in a Luttinger liquid. Experimentally available examples of such a system are single wall carbon nanotubes grown entirely from 13C and GaAs-based quantum wires. In these systems the hyperfine interaction between the nuclear spin and the conduction electron spin is very weak, yet it triggers a strong feedback reaction that results in an ordered phase consisting of a nuclear helimagnet that is inseparably bound to an electronic density wave combining charge and spin degrees of freedom. This effect can be interpreted as a strong renormalization of the nuclear Overhauser field and is a unique signature of Luttinger liquid physics. Through the feedback the order persists up into the millikelvin range. A particular signature is the reduction of the electric conductance by the universal factor 2.Comment: 30 pages, 10 figures; Sec. II contains a 2+ pages summary giving a complete overview to the main conditions and results; v3: updated references, typos correcte

    Topological superconductivity with deformable magnetic skyrmions

    Full text link
    Magnetic skyrmions are nanoscale spin configurations that can be efficiently created and manipulated. They hold great promises for next-generation spintronics applications. In parallel to these developments, the interplay of magnetism, superconductivity and spin-orbit coupling has proved to be a versatile platform for engineering topological superconductivity predicted to host non-abelian excitations, Majorana zero modes. We show that topological superconductivity can be induced by proximitizing magnetic skyrmions and conventional superconductors, without need for additional ingredients. Apart from a previously reported Majorana zero mode in the core of the skyrmion, we find a more universal chiral band of Majorana modes on the edge of the skyrmion. We show that the chiral Majorana band is effectively flat in the physically relevant regime of parameters, leading to interesting robustness and scaling properties. In particular, the number of Majorana modes in the (nearly-)flat band scales with the perimeter length of a deformed skyrmion configuration, while being robust to local disorder.Comment: 16 + 3 pages, 3 figures + Supplementary Material

    Asymptotic behavior of impurity-induced bound states in low-dimensional topological superconductors

    Full text link
    We study theoretically the asymptotic behavior of the Shiba bound states associated with magnetic impurities embedded in both 2D and 1D anomalous superconductors. We calculate analytically the spatial dependence of the local density of states together with the spin polarization associated with the Shiba bound states. We show that the latter quantity exhibits drastic differences between s-wave and different types of p-wave superconductors. Such properties, which could be measured using spin-polarized STM, offer therefore a way to discriminate between singlet and triplet pairing in low-dimensional superconductors, as well as a way to estimate the amplitude of the triplet pairing in these systems.Comment: 18 pages, 5 figure

    Disordered one-dimensional Bose-Fermi mixtures: The Bose-Fermi glass

    Full text link
    We analyze an interacting Bose-Fermi mixture in a 1D disordered potential using a combination of renormalization group and variational methods. We obtain the complete phase diagram in the incommensurate case as a function of bosonic and inter-species interaction strengths, in the weak disorder limit. We find that the system is characterized by several phase transitions between superfluid and various glassy insulating states, including a new Bose-Fermi glass phase, where both species are coupled and localized. We show that the dynamical structure factor, as measured through Bragg scattering experiments, can distinguish between the various localized phases and probe their dynamics.Comment: 4 pages, 2 figure

    Magnon transport through microwave pumping

    Full text link
    We present a microscopic theory of magnon transport in ferromagnetic insulators (FIs). Using magnon injection through microwave pumping, we propose a way to generate magnon dc currents and show how to enhance their amplitudes in hybrid ferromagnetic insulating junctions. To this end focusing on a single FI, we first revisit microwave pumping at finite (room) temperature from the microscopic viewpoint of magnon injection. Next, we apply it to two kinds of hybrid ferromagnetic insulating junctions. The first is the junction between a quasi-equilibrium magnon condensate and magnons being pumped by microwave, while the second is the junction between such pumped magnons and noncondensed magnons. We show that quasi-equilibrium magnon condensates generate ac and dc magnon currents, while noncondensed magnons produce essentially a dc magnon current. The ferromagnetic resonance (FMR) drastically increases the density of the pumped magnons and enhances such magnon currents. Lastly, using microwave pumping in a single FI, we discuss the possibility that a magnon current through an Aharonov-Casher phase flows persistently even at finite temperature. We show that such a magnon current arises even at finite temperature in the presence of magnon-magnon interactions. Due to FMR, its amplitude becomes much larger than the condensed magnon current.Comment: 12 pages, 5 figures, accepted for publication in Phys. Rev.
    corecore