56 research outputs found
ELKS2α/CAST Deletion Selectively Increases Neurotransmitter Release at Inhibitory Synapses
SummaryThe presynaptic active zone is composed of a protein network that contains ELKS2α (a.k.a. CAST) as a central component. Here we demonstrate that in mice, deletion of ELKS2α caused a large increase in inhibitory, but not excitatory, neurotransmitter release, and potentiated the size, but not the properties, of the readily-releasable pool of vesicles at inhibitory synapses. Quantitative electron microscopy revealed that the ELKS2α deletion did not change the number of docked vesicles or other ultrastructural parameters of synapses, except for a small decrease in synaptic vesicle numbers. The ELKS2α deletion did, however, alter the excitatory/inhibitory balance and exploratory behaviors, possibly as a result of the increased synaptic inhibition. Thus, as opposed to previous studies indicating that ELKS2α is essential for mediating neurotransmitter release, our results suggest that ELKS2α normally restricts release and limits the size of the readily-releasable pool of synaptic vesicles at the active zone of inhibitory synapses
Protein kinase C is a calcium sensor for presynaptic short-term plasticity
In presynaptic boutons, calcium (Ca2+) triggers both neurotransmitter release and short-term synaptic plasticity. Whereas synaptotagmins are known to mediate vesicle fusion through binding of high local Ca2+ to their C2 domains, the proteins that sense smaller global Ca2+ increases to produce short-term plasticity have remained elusive. Here, we identify a Ca2+ sensor for post-tetanic potentiation (PTP), a form of plasticity thought to underlie short-term memory. We find that at the functionally mature calyx of Held synapse the Ca2+-dependent protein kinase C isoforms α and β are necessary for PTP, and the expression of PKCβ in PKCαβ double knockout mice rescues PTP. Disruption of Ca2+ binding to the PKCβ C2 domain specifically prevents PTP without impairing other PKCβ-dependent forms of synaptic enhancement. We conclude that different C2-domain-containing presynaptic proteins are engaged by different Ca2+ signals, and that Ca2+ increases evoked by tetanic stimulation are sensed by PKCβ to produce PTP. DOI: http://dx.doi.org/10.7554/eLife.03011.00
The RAB3-RIM Pathway Is Essential for the Release of Neuromodulators
Neurons secrete neuromodulators/neuropeptides from dense-core vesicles (DCVs) by a largely unknown mechanism. Persoon et al. identify RAB3 and RIM1/2 as essential factors. RAB3’s indispensable role is the first distinct feature of DCV secretion as compared to synaptic vesicle secretion
Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities
SS18 Together with Animal-Specific Factors Defines Human BAF-Type SWI/SNF Complexes
Contains fulltext :
94049.pdf (publisher's version ) (Open Access
Recommended from our members
ELKS active zone proteins as multitasking scaffolds for secretion
Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Although roles of individual active zone proteins in exocytosis are in part understood, the molecular mechanisms that hold the protein scaffold at the active zone together and link it to the presynaptic plasma membrane have remained unknown. This is largely due to redundancy within and across scaffolding protein families at the active zone. Recent studies, however, have uncovered that ELKS proteins, also called ERC, Rab6IP2 or CAST, act as active zone scaffolds redundant with RIMs. This redundancy has led to diverse synaptic phenotypes in studies of ELKS knockout mice, perhaps because different synapses rely to a variable extent on scaffolding redundancy. In this review, we first evaluate the need for presynaptic scaffolding, and we then discuss how the diverse synaptic and non-synaptic functional roles of ELKS support the hypothesis that ELKS provides molecular scaffolding for organizing vesicle traffic at the presynaptic active zone and in other cellular compartments
Recommended from our members
ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains
In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming. DOI: http://dx.doi.org/10.7554/eLife.14862.00
RIM determines Ca²+ channel density and vesicle docking at the presynaptic active zone
At presynaptic active zones, neurotransmitter release is initiated by the opening of voltage-gated Ca²+ channels close to docked vesicles. The mechanisms that enrich Ca²+ channels at active zones are, however, largely unknown, possibly because of the limited presynaptic accessibility of most synapses. Here, we have established a Cre-lox based conditional knockout approach at a presynaptically accessible central nervous system synapse, the calyx of Held, to directly study the functions of RIM proteins. Removal of all RIM1/2 isoforms strongly reduced the presynaptic Ca²+ channel density, revealing a role of RIM proteins in Ca²+ channel targeting. Removal of RIMs also reduced the readily releasable pool, paralleled by a similar reduction of the number of docked vesicles, and the Ca²+ channel-vesicle coupling was decreased. Thus, RIM proteins co-ordinately regulate key functions for fast transmitter release, enabling a high presynaptic Ca²+ channel density and vesicle docking at the active zone
Presynaptic Short-Term Plasticity Persists in the Absence of PKC Phosphorylation of Munc18-1.
Post-tetanic potentiation (PTP) is a form of short-term plasticity that lasts for tens of seconds following a burst of presynaptic activity. It has been proposed that PTP arises from protein kinase C (PKC) phosphorylation of Munc18-1, an SM (Sec1/Munc-18 like) family protein that is essential for release. To test this model, we made a knock-in mouse in which all Munc18-1 PKC phosphorylation sites were eliminated through serine-to-alanine point mutations (Munc18-1SA mice), and we studied mice of either sex. The expression of Munc18-1 was not altered in Munc18-1SA mice, and there were no obvious behavioral phenotypes. At the hippocampal CA3-to-CA1 synapse and the granule cell parallel fiber (PF)-to-Purkinje cell (PC) synapse, basal transmission was largely normal except for small decreases in paired-pulse facilitation that are consistent with a slight elevation in release probability. Phorbol esters that mimic the activation of PKC by diacylglycerol still increased synaptic transmission in Munc18-1SA mice. In Munc18-1SA mice, 70% of PTP remained at CA3-to-CA1 synapses, and the amplitude of PTP was not reduced at PF-to-PC synapses. These findings indicate that at both CA3-to-CA1 and PF-to-PC synapses, phorbol esters and PTP enhance synaptic transmission primarily by mechanisms that are independent of PKC phosphorylation of Munc18-1.SIGNIFICANCE STATEMENT A leading mechanism for a prevalent form of short-term plasticity, post-tetanic potentiation (PTP), involves protein kinase C (PKC) phosphorylation of Munc18-1. This study tests this mechanism by creating a knock-in mouse in which Munc18-1 is replaced by a mutated form of Munc18-1 that cannot be phosphorylated. The main finding is that most PTP at hippocampal CA3-to-CA1 synapses or at cerebellar granule cell-to-Purkinje cell synapses does not rely on PKC phosphorylation of Munc18-1. Thus, mechanisms independent of PKC phosphorylation of Munc18-1 are important mediators of PTP
- …