121 research outputs found

    Apodized Lyot Coronagraph for VLT-SPHERE: Laboratory tests and performances of a first prototype in the visible

    Full text link
    We present some of the High Dynamic Range Imaging activities developed around the coronagraphic test-bench of the Laboratoire A. H. Fizeau (Nice). They concern research and development of an Apodized Lyot Coronagraph (ALC) for the VLT-SPHERE instrument and experimental results from our testbed working in the visible domain. We determined by numerical simulations the specifications of the apodizing filter and searched the best technological process to manufacture it. We present the results of the experimental tests on the first apodizer prototype in the visible and the resulting ALC nulling performances. The tests concern particularly the apodizer characterization (average transmission radial profile, global reflectivity and transmittivity in the visible), ALC nulling performances compared with expectations, sensitivity of the ALC performances to misalignments of its components

    BIGRE: a low cross-talk integral field unit tailored for extrasolar planets imaging spectroscopy

    Full text link
    Integral field spectroscopy (IFS) represents a powerful technique for the detection and characterization of extrasolar planets through high contrast imaging, since it allows to obtain simultaneously a large number of monochromatic images. These can be used to calibrate and then to reduce the impact of speckles, once their chromatic dependence is taken into account. The main concern in designing integral field spectrographs for high contrast imaging is the impact of the diffraction effects and the non-common path aberrations together with an efficient use of the detector pixels. We focus our attention on integral field spectrographs based on lenslet-arrays, discussing the main features of these designs: the conditions of appropriate spatial and spectral sampling of the resulting spectrograph's slit functions and their related cross-talk terms when the system works at the diffraction limit. We present a new scheme for the integral field unit (IFU) based on a dual-lenslet device (BIGRE), that solves some of the problems related to the classical TIGER design when used for such applications. We show that BIGRE provides much lower cross-talk signals than TIGER, allowing a more efficient use of the detector pixels and a considerable saving of the overall cost of a lenslet-based integral field spectrograph.Comment: 17 pages, 18 figures, accepted for publication in Ap

    SPHERE IRDIS and IFS astrometric strategy and calibration

    Full text link
    We present the current results of the astrometric characterization of the VLT planet finder SPHERE over 2 years of on-sky operations. We first describe the criteria for the selection of the astrometric fields used for calibrating the science data: binaries, multiple systems, and stellar clusters. The analysis includes measurements of the pixel scale and the position angle with respect to the North for both near-infrared subsystems, the camera IRDIS and the integral field spectrometer IFS, as well as the distortion for the IRDIS camera. The IRDIS distortion is shown to be dominated by an anamorphism of 0.60+/-0.02% between the horizontal and vertical directions of the detector, i.e. 6 mas at 1". The anamorphism is produced by the cylindrical mirrors in the common path structure hence common to all three SPHERE science subsystems (IRDIS, IFS, and ZIMPOL), except for the relative orientation of their field of view. The current estimates of the pixel scale and North angle for IRDIS are 12.255+/-0.009 milliarcseconds/pixel for H2 coronagraphic images and -1.75+/-0.08 deg. Analyses of the IFS data indicate a pixel scale of 7.46+/-0.02 milliarcseconds/pixel and a North angle of -102.18+/-0.13 deg. We finally discuss plans for providing astrometric calibration to the SPHERE users outside the instrument consortium.Comment: 12 pages, 6 figures, 3 table

    AMBER : a near infrared focal instrument for the VLTI

    Get PDF
    10 pagesInternational audienceAMBER is the General User near-infrared focal instrument of the Very Large Telescope interferometer. Its specifications are based on three key programs on Young Stellar Objects, Active Galactic Nuclei central regions, masses and spectra of hot Extra Solar Planets. It has an imaging capacity because it combines up to three beams and very high accuracy measurement are expected from the spatial filtering of beams by single mode fibers and the comparison of measurements made simultaneously in different spectral channels

    A Constraint Satisfaction Approach to a Circuit Design Problem

    No full text
    Abstract. A classical circuit-design problem from Ebers and Moll (1954) features a system of nine nonlinear equations in nine variables that is very challenging both for local and global methods. This system was solved globally using an interval method by Ratschek and Rokne (1993) in the box [0, 10] 9. Their algorithm had enormous costs (i.e., over 14 months using a network of 30 Sun Sparc-1 workstations) but they state that “at this time, we know no other method which has been applied to this circuit design problem and which has led to the same guaranteed result of locating exactly one solution in this huge domain, completed with a reliable error estimate”. The present paper gives a novel branch-and-prune algorithm that obtains a unique safe box for the above system within reasonable computation times. The algorithm combines traditional interval techniques with an adaptation of discrete constraint-satisfaction techniques to continuous problems. Of particular interest is the simplicity of the approach

    Thermal Modeling of the Wide-Field Infrared Camera for the CFHT

    No full text
    International audienc

    Thermal Modeling of the Wide-Field Infrared Camera for the CFHT

    No full text
    International audienc
    • …
    corecore