201 research outputs found

    Cued Speech Gesture Recognition: A First Prototype Based on Early Reduction

    No full text
    International audienceCued Speech is a specific linguistic code for hearing-impaired people. It is based on both lip reading and manual gestures. In the context of THIMP (Telephony for the Hearing-IMpaired Project), we work on automatic cued speech translation. In this paper, we only address the problem of automatic cued speech manual gesture recognition. Such a gesture recognition issue is really common from a theoretical point of view, but we approach it with respect to its particularities in order to derive an original method. This method is essentially built around a bioinspired method called early reduction. Prior to a complete analysis of each image of a sequence, the early reduction process automatically extracts a restricted number of key images which summarize the whole sequence. Only the key images are studied from a temporal point of view with lighter computation than the complete sequenc

    A Non-Intrusive Monitoring System for Ambient Assisted Living Service Delivery

    Get PDF
    International audienceAutomation of smart home for ambient assisted living is currently based on a widespread use of sensors. In this paper, we propose a monitoring system based on the semantic analysis of home automation logs (user requests). Our goal is to replace as many sensors as possible by using advanced tools to infer information usually sensored. To take up this challenge, an ontology, automatically derived from a model-driven process, rstly de nes user-system interactions. Then, the use of rules allows an inference engine to deduce user location and intention leading to adapted service delivery

    Eine Zukunft für die medizinische Lehre oder der Weg zum «Teach me»

    Full text link

    Use of coronary calcium score scans from stand-alone multislice computed tomography for attenuation correction of myocardial perfusion SPECT

    Get PDF
    Purpose: To evaluate the use of CT attenuation maps, generated from coronary calcium scoring (CCS) scans at in- and expiration with a 64-slice CT scanner, for attenuation correction (AC) of myocardial perfusion SPECT images. Methods: Thirty-two consecutive patients underwent 99mTc-tetrofosmin gated adenosine stress/rest SPECT scan on an Infinia Hawkeye SPECT-CT device (GE Medical Systems) followed by CCS and CT angiography on a 64-slice CT. AC of the iteratively reconstructed images was performed with AC maps obtained: (a) from the "Hawkeye” low-resolution X-ray CT facility attached to the Infinia camera (IRAC); (b) from the CCS scan acquired on a 64-slice CT scanner during maximal inspiration (ACINSP) and (c) during normal expiration (ACEXP). Automatically determined uptake values of stress scans (QPS, Cedars Medical Sinai) from ACINSP and ACEXP were compared with IRAC. Agatston score (AS) values using ACINSPversus ACEXP were also compared. Results: ACINSP and ACEXP resulted in identical findings versus IRAC by visual analysis. A good correlation for uptake values between IRAC and ACINSP was found (apex, r=0.92; anterior, r=0.85; septal, r=0.91; lateral, r=0.86; inferior, r=0.90; all p<0.0001). The correlation was even closer between IRAC and ACEXP (apex, r=0.97; anterior, r=0.91; septal, r=0.94; lateral, r=0.92; inferior, r=0.97; all p<0.0001). The mean AS during inspiration (319±737) and expiration(317±778) was comparable (p=NS). Conclusion: Attenuation maps from CCS allow accurate AC of SPECT MPI images. ACEXP proved superior to ACINSP, suggesting that in hybrid scans CCS may be performed during normal expiration to allow its additional use for AC of SPECT MP

    Investigation of bone resorption within a cortical basic multicellular unit using a lattice-based computational model

    Full text link
    In this paper we develop a lattice-based computational model focused on bone resorption by osteoclasts in a single cortical basic multicellular unit (BMU). Our model takes into account the interaction of osteoclasts with the bone matrix, the interaction of osteoclasts with each other, the generation of osteoclasts from a growing blood vessel, and the renewal of osteoclast nuclei by cell fusion. All these features are shown to strongly influence the geometrical properties of the developing resorption cavity including its size, shape and progression rate, and are also shown to influence the distribution, resorption pattern and trajectories of individual osteoclasts within the BMU. We demonstrate that for certain parameter combinations, resorption cavity shapes can be recovered from the computational model that closely resemble resorption cavity shapes observed from microCT imaging of human cortical bone.Comment: 17 pages, 11 figures, 1 table. Revised version: paper entirely rewritten for a more biology-oriented readership. Technical points of model description now in Appendix. Addition of two new figures (Fig. 5 and Fig. 9) and removal of former Fig.

    Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THY1. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment.</p> <p>Methods</p> <p>Prostate CD90<sup>+ </sup>stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder.</p> <p>Results</p> <p>The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes.</p> <p>Conclusion</p> <p>CD90<sup>+ </sup>prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.</p

    Vitamin D Binding Protein Genotype and Osteoporosis

    Get PDF
    Osteoporosis is a bone disease leading to an increased fracture risk. It is considered a complex multifactorial genetic disorder with interaction of environmental and genetic factors. As a candidate gene for osteoporosis, we studied vitamin D binding protein (DBP, or group-specific component, Gc), which binds to and transports vitamin D to target tissues to maintain calcium homeostasis through the vitamin D endocrine system. DBP can also be converted to DBP-macrophage activating factor (DBP-MAF), which mediates bone resorption by directly activating osteoclasts. We summarized the genetic linkage structure of the DBP gene. We genotyped two single-nucleotide polymorphisms (SNPs, rs7041 = Glu416Asp and rs4588 = Thr420Lys) in 6,181 elderly Caucasians and investigated interactions of the DBP genotype with vitamin D receptor (VDR) genotype and dietary calcium intake in relation to fracture risk. Haplotypes of the DBP SNPs correspond to protein variations referred to as Gc1s (haplotype 1), Gc2 (haplotype 2), and Gc1f (haplotype3). In a subgroup of 1,312 subjects, DBP genotype was found to be associated with increased and decreased serum 25-(OH)D3 for haplotype 1 (P = 3 × 10−4) and haplotype 2 (P = 3 × 10−6), respectively. Similar associations were observed for 1,25-(OH)2D3. The DBP genotype was not significantly associated with fracture risk in the entire study population. Yet, we observed interaction between DBP and VDR haplotypes in determining fracture risk. In the DBP haplotype 1-carrier group, subjects of homozygous VDR block 5-haplotype 1 had 33% increased fracture risk compared to noncarriers (P = 0.005). In a subgroup with dietary calcium intake <1.09 g/day, the hazard ratio (95% confidence interval) for fracture risk of DBP hap1-homozygote versus noncarrier was 1.47 (1.06–2.05). All associations were independent of age and gender. Our study demonstrated that the genetic effect of the DBP gene on fracture risk appears only in combination with other genetic and environmental risk factors for bone metabolism
    corecore