347 research outputs found

    Polyubiquitin binding to ABIN1 is required to prevent autoimmunity

    Get PDF
    The protein ABIN1 possesses a polyubiquitin-binding domain homologous to that present in nuclear factor kappa B (NF-kappa B) essential modulator (NEMO), a component of the inhibitor of NF-kappa B (I kappa B) kinase (IKK) complex. To address the physiological significance of polyubiquitin binding, we generated knockin mice expressing the ABIN1[D485N] mutant instead of the wild-type (WT) protein. These mice developed all the hallmarks of autoimmunity, including spontaneous formation of germinal centers, isotype switching, and production of autoreactive antibodies. Autoimmunity was suppressed by crossing to MyD88(-/-) mice, demonstrating that toll-like receptor (TLR)-MyD88 signaling pathways are needed for the phenotype to develop. The B cells and myeloid cells of the ABIN1[D485N] mice showed enhanced activation of the protein kinases TAK, IKK-alpha/beta, c-Jun N-terminal kinases, and p38 alpha mitogen-activated protein kinase and produced more IL-6 and IL-12 than WT. The mutant B cells also proliferated more rapidly in response to TLR ligands. Our results indicate that the interaction of ABIN1 with polyubiquitin is required to limit the activation of TLR-MyD88 pathways and prevent autoimmunity

    Toll-Like Receptor Ligands Induce Human T Cell Activation and Death, a Model for HIV Pathogenesis

    Get PDF
    Background: Recently, heightened systemic translocation of microbial products was found in persons with chronic HIV infection and this was linked to immune activation and CD4 + T cell homeostasis. Methodology: We examined here the effects of microbial Toll-like receptor (TLR) ligands on T cell activation in vitro. Conclusions/Findings: We show that exposure to TLR ligands results in activation of memory and effector CD4 + and CD8 + T cells. After exposure to each of 8 different ligands that activate TLRs 2, 3, 4, 5, 7, 8, and 9, CD8 + T cells are activated and gain expression of the C type lectin CD69 that may promote their retention in lymphoid tissues. In contrast, CD4 + T cells rarely increase CD69 expression but instead enter cell cycle. Despite activation and cell cycle entry, CD4 + T cells divide poorly and instead, disproportionately undergo activation-induced cell death. Systemic exposure to TLR agonists may therefore increase immune activation, effector cell sequestration in lymphoid tissues and T cell turnover. These events may contribute to the pathogenesis of immune dysfunction and CD4+ T cell losses in chronic infection with the human immunodeficiency virus

    Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection

    Get PDF
    Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. © 2013 Kader et al

    Toll-Like Receptor (TLR) and Nucleosome-binding Oligomerization Domain (NOD) gene polymorphisms and endometrial cancer risk

    Get PDF
    Background: Endometrial cancer is the most common gynaecological malignancy in women of developed countries. Many risk factors implicated in endometrial cancer trigger inflammatory events; therefore, alterations in immune response may predispose an individual to disease. Toll-like receptors (TLRs) and nucleosome-binding oligomerization domain (NOD) genes are integral to the recognition of pathogens and are highly polymorphic. For these reasons, the aim of the study was to assess the frequency of polymorphic variants in TLR and NOD genes in an Australian endometrial cancer population. Methods: Ten polymorphisms were genotyped in 191 endometrial cancer cases and 291 controls using real-time PCR: NOD1 (rs2075822, rs2907749, rs2907748), NOD2 (rs5743260, rs2066844, rs2066845), TLR2 (rs5743708), TLR4 (rs4986790) and TLR9 (rs5743836, rs187084). Results: Haplotype analysis revealed that the combination of the variant alleles of the two TLR9 polymorphisms, rs5743836 and rs187084, were protective for endometrial cancer risk: OR 0.11, 95% CI (0.03-0.44), p = 0.002. This result remained highly significant after adjustment for endometrial cancer risk factors and Bonferroni correction for multiple testing. There were no other associations observed for the other polymorphisms in TLR2, TLR4, NOD1 and NOD2. Conclusions: The variant 'C' allele of rs5743836 causes greater TLR9 transcriptional activity compared to the 'T' allele, therefore, higher TLR9 activity may be related to efficient removal of microbial pathogens within the endometrium. Clearly, the association of these TLR9 polymorphisms and endometrial cancer risk must be further examined in an independent population. The results point toward the importance of examining immune response in endometrial tumourgenesis to understand new pathways that may be implicated in disease

    Toll-Like Receptor 4 Is Involved in Inflammatory and Joint Destructive Pathways in Collagen-Induced Arthritis in DBA1J Mice

    Get PDF
    In rheumatoid arthritis, a significant proportion of cytokine and chemokine synthesis is attributed to innate immune mechanisms. TLR4 is a prominent innate receptor since several endogenous ligands known to activate the innate immune system bind to it and may thereby promote joint inflammation. We generated TLR4 deficient DBA1J mice by backcrossing the TLR4 mutation present in C3H/HeJ strain onto the DBA1J strain and investigated the course of collagen-induced arthritis in TLR4 deficient mice in comparison to wild type littermates. The incidence of collagen- induced arthritis was significantly lower in TLR4 deficient compared to wild type mice (59 percent vs. 100 percent). The severity of arthritis was reduced in the TLR4 deficient mice compared to wild type littermates (mean maximum score 2,54 vs. 6,25). Mice deficient for TLR4 were virtually protected from cartilage destruction, and infiltration of inflammatory cells was reduced compared to wt mice. In parallel to the decreased clinical severity, lower anti-CCP antibody concentrations and lower IL-17 concentrations were found in the TLR4 deficient mice. The study further supports the role of TLR4 in the propagation of joint inflammation and destruction. Moreover, since deficiency in TLR4 led to decreased IL-17 and anti-CCP antibody production, the results indicate a link between TLR4 stimulation and the adaptive autoimmune response. This mechanism might be relevant in human rheumatoid arthritis, possibly in response to activating endogenous ligands in the affected joints

    Neonatal immune responses to TLR2 stimulation: Influence of maternal atopy on Foxp3 and IL-10 expression

    Get PDF
    BACKGROUND: Maternal atopic background and stimulation of the adaptive immune system with allergen interact in the development of allergic disease. Stimulation of the innate immune system through microbial exposure, such as activation of the innate Toll-like-receptor 2 (TLR2), may reduce the development of allergy in childhood. However, little is known about the immunological effects of microbial stimulation on early immune responses and in association with maternal atopy. METHODS: We analyzed immune responses of cord blood mononuclear cells (CBMC) from 50 healthy neonates (31 non-atopic and 19 atopic mothers). Cells were stimulated with the TLR2 agonist peptidoglycan (Ppg) or the allergen house dust mite Dermatophagoides farinae (Derf1), and results compared to unstimulated cells. We analyzed lymphocyte proliferation and cytokine secretion of CBMC. In addition, we assessed gene expression associated with T regulatory cells including the transcription factor Foxp3, the glucocorticoid-induced TNF receptor (GITR), and the cytotoxic lymphocyte antigen 4 (CTLA4). Lymphocyte proliferation was measured by (3)H-Thymidine uptake, cytokine concentrations determined by ELISA, mRNA expression of T cell markers by real-time RT-PCR. RESULTS: Ppg stimulation induced primarily IL-10 cytokine production, in addition to IFN-γ, IL-13 and TNF-α secretion. GITR was increased following Ppg stimulation (p = 0.07). Ppg-induced IL-10 production and induction of Foxp3 were higher in CBMC without, than with maternal atopy (p = 0.04, p = 0.049). IL-10 production was highly correlated with increased expression of Foxp3 (r = 0.53, p = 0.001), GITR (r = 0.47, p = 0.004) and CTLA4 (r = 0.49, p = 0.003), independent of maternal atopy. CONCLUSION: TLR2 stimulation with Ppg induces IL-10 and genes associated with T regulatory cells, influenced by maternal atopy. Increased IL-10 and Foxp3 induction in CBMC of non-atopic compared to atopic mothers, may indicate an increased capacity to respond to microbial stimuli

    Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma is a chronic inflammatory disease of the airway that is characterized by a Th2-type of immune response with increasing evidence for involvement of Th17 cells. The role of IL-6 in promoting effector T cell subsets suggest that IL-6 may play a functional role in asthma. Classically IL-6 has been viewed as an inflammatory marker, along with TNFα and IL-1β, rather than as regulatory cytokine.</p> <p>Objective</p> <p>To investigate the potential relationship between IL-6 and other proinflammatory cytokines, Th2/Th17 cytokines and lung function in allergic asthma, and thus evaluate the potential role of IL-6 in this disease.</p> <p>Methods</p> <p>Cytokine levels in induced sputum and lung function were measured in 16 healthy control and 18 mild-moderate allergic asthmatic subjects.</p> <p>Results</p> <p>The levels of the proinflammatory biomarkers TNFα and IL-1β were not different between the control and asthmatic group. In contrast, IL-6 levels were specifically elevated in asthmatic subjects compared with healthy controls (p < 0.01). Hierarchical regression analysis in the total study cohort indicates that the relationship between asthma and lung function could be mediated by IL-6. Among Th2 cytokines only IL-13 (p < 0.05) was also elevated in the asthmatic group, and positively correlated with IL-6 levels (r<sub>S </sub>= 0.53, p < 0.05).</p> <p>Conclusions</p> <p>In mild-moderate asthma, IL-6 dissociates from other proinflammatory biomarkers, but correlates with IL-13 levels. Furthermore, IL-6 may contribute to impaired lung function in allergic asthma.</p

    TLR1/2, TLR7, and TLR9 Signals Directly Activate Human Peripheral Blood Naive and Memory B Cell Subsets to Produce Cytokines, Chemokines, and Hematopoietic Growth Factors

    Get PDF
    Recently, it has been reported that using multiple signals, murine and human B cells secrete several cytokines with pro-inflammatory and immunoregulatory properties. We present the first comprehensive analysis of 24 cytokines, chemokines, and hematopoietic growth factors production by purified human peripheral blood B cells (CD19+), and naive (CD19+CD27-) and memory (CD19+CD27+) B cells in response to direct and exclusive signaling provided by toll-like receptor (TLR) ligands Pam3CSK (TLR1/TLR2), Imiquimod (TLR7), and GpG-ODN2006 (TLR9). All three TLR ligands stimulated B cells (CD19+) to produce cytokines IL-1α, IL-1β, IL-6, TNF-α, IL-13, and IL-10, and chemokines MIP-1α, MIP-1β, MCP-1, IP-10, and IL-8. However, GM-CSF and G-CSF production was predominantly induced by TLR2 agonist. Most cytokines/chemokines/hematopoietic growth factors were predominantly or exclusively produced by memory B cells, and in general, TLR2 signal was more powerful than signal provided viaTLR7 and TLR9. No significant secretion of eotaxin, IFN-α, IFN-γ, IL-2, IL-3, IL-4, IL-5, IL-7, IL-15, IL-17, IL-12p40, IL-12p70, and TNF-β (lymphotoxin) was observed. These data demonstrate that human B cells can be directly activated viaTLR1/TLR2, TLR7, and TLR9 to induce secretion of cytokines, chemokines, and hematopoietic growth factors and suggest a role of B cells in immune response against microbial pathogenesis and immune homeostasis

    Toll-Like Receptor Agonists Synergize with CD40L to Induce Either Proliferation or Plasma Cell Differentiation of Mouse B Cells

    Get PDF
    In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response

    Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine is Primarily Controlled by Toll-like Receptor Signalling

    Get PDF
    In the case of an influenza pandemic, the current global influenza vaccine production capacity will be unable to meet the demand for billions of vaccine doses. The ongoing threat of an H5N1 pandemic therefore urges the development of highly immunogenic, dose-sparing vaccine formulations. In unprimed individuals, inactivated whole virus (WIV) vaccines are more immunogenic and induce protective antibody responses at a lower antigen dose than other formulations like split virus (SV) or subunit (SU) vaccines. The reason for this discrepancy in immunogenicity is a long-standing enigma. Here, we show that stimulation of Toll-like receptors (TLRs) of the innate immune system, in particular stimulation of TLR7, by H5N1 WIV vaccine is the prime determinant of the greater magnitude and Th1 polarization of the WIV-induced immune response, as compared to SV- or SU-induced responses. This TLR dependency largely explains the relative loss of immunogenicity in SV and SU vaccines. The natural pathogen-associated molecular pattern (PAMP) recognized by TLR7 is viral genomic ssRNA. Processing of whole virus particles into SV or SU vaccines destroys the integrity of the viral particle and leaves the viral RNA prone to degradation or involves its active removal. Our results show for a classic vaccine that the acquired immune response evoked by vaccination can be enhanced and steered by the innate immune system, which is triggered by interaction of an intrinsic vaccine component with a pattern recognition receptor (PRR). The insights presented here may be used to further improve the immune-stimulatory and dose-sparing properties of classic influenza vaccine formulations such as WIV, and will facilitate the development of new, even more powerful vaccines to face the next influenza pandemic
    corecore