623 research outputs found

    Efflux of Osmolyte Amino Acids during Isovolumic Regulation in Hippocampal Slices

    Get PDF
    The efflux of potassium (K+) and amino acids from hippocampal slices was measured after sudden exposure to 10% (270 mOsm), 25% (225 mOsm) or 50% (150 mOsm) hyposmotic solutions or after gradual decrease (22.5 mOsm/min) in external osmolarity. In slices suddenly exposed to 50% hyposmotic solutions, swelling was followed by partial (74%) cell volume recovery, suggesting regulatory volume decrease (RVD). With gradual hyposmotic changes, no increase in cell water content was observed even when the solution at the end of the experiment was 50% hyposmotic, showing the occurrence of isovolumic regulation (IVR). The gradual decrease in osmolarity elicited the efflux of 3H-taurine with a threshold at –5 mOsm and D-[3H]aspartate (as marker for glutamate) and at –20 mOsm for [3H]GABA. The efflux rate of [3H]taurine was always notably higher than those of [3H]GABA and D-[3H]aspartate, with a maximal increase over the isosmotic efflux of about 7-fold for [3H]taurine and 3- and 2-fold for [3H]GABA and D-[3H]aspartate, respectively. The amino acid content in slices exposed to 50% hyposmotic solutions (abrupt change) during 20 min decreased by 50.6% and 62.6% (gradual change). Taurine and glutamate showed the largest decrease. An enhancement in 86Rb efflux and a corresponding decrease in K+ tissue content was seen in association with RVD but not with IVR. These results demonstrate the contribution of amino acids to IVR and indicate their involvement in this mechanism of cell volume control

    Efflux of Osmolyte Amino Acids during Isovolumic Regulation in Hippocampal Slices

    Get PDF
    The efflux of potassium (K+) and amino acids from hippocampal slices was measured after sudden exposure to 10% (270 mOsm), 25% (225 mOsm) or 50% (150 mOsm) hyposmotic solutions or after gradual decrease (22.5 mOsm/min) in external osmolarity. In slices suddenly exposed to 50% hyposmotic solutions, swelling was followed by partial (74%) cell volume recovery, suggesting regulatory volume decrease (RVD). With gradual hyposmotic changes, no increase in cell water content was observed even when the solution at the end of the experiment was 50% hyposmotic, showing the occurrence of isovolumic regulation (IVR). The gradual decrease in osmolarity elicited the efflux of 3H-taurine with a threshold at –5 mOsm and D-[3H]aspartate (as marker for glutamate) and at –20 mOsm for [3H]GABA. The efflux rate of [3H]taurine was always notably higher than those of [3H]GABA and D-[3H]aspartate, with a maximal increase over the isosmotic efflux of about 7-fold for [3H]taurine and 3- and 2-fold for [3H]GABA and D-[3H]aspartate, respectively. The amino acid content in slices exposed to 50% hyposmotic solutions (abrupt change) during 20 min decreased by 50.6% and 62.6% (gradual change). Taurine and glutamate showed the largest decrease. An enhancement in 86Rb efflux and a corresponding decrease in K+ tissue content was seen in association with RVD but not with IVR. These results demonstrate the contribution of amino acids to IVR and indicate their involvement in this mechanism of cell volume control

    Differential modulation of human GABAC‑ρ1 receptor by sulfur‑containing compounds structurally related to taurine

    Get PDF
    Background: The amino acid taurine (2-Aminoethanesulfonic acid) modulates inhibitory neurotransmitter receptors. This study aimed to determine if the dual action of taurine on GABAC- ρ1R relates to its structure. To address this, we tested the ability of the structurally related compounds homotaurine, hypotaurine, and isethionic acid to modulate GABAC- ρ1R. Results: In Xenopus laevis oocytes, hypotaurine and homotaurine partially activate heterologously expressed GABAC- ρ1R, showing an increment in its deactivation time with no changes in channel permeability, whereas isethionic acid showed no effect. Competitive assays suggest that hypotaurine and homotaurine compete for the GABA-binding site. In addition, their effects were blocked by the ion-channel blockers picrotixin and Methyl(1,2,5,6- tetrahydropyridine-4-yl) phosphinic acid. In contrast to taurine, co-application of GABA with hypotaurine or homotaurine revealed that the dual effect is present separately for each compound: hypotaurine modulates positively the GABA current, while homotaurine shows a negative modulation, both in a dose-dependent manner. Interestingly, homotaurine diminished hypotaurine-induced currents. Thus, these results strongly suggest a competitive interaction between GABA and homotaurine or hypotaurine for the same binding site. “In silico” modeling confirms these observations, but it also shows a second binding site for homotaurine, which could explain the negative effect of this compound on the current generated by GABA or hypotaurine, during co-application protocols. Conclusions: The sulfur-containing compounds structurally related to taurine are partial agonists of GABAC- ρ1R that occupy the agonist binding site. The dual effect is unique to taurine, whereas in the case of hypotaurine and homotaurine it presents separately; hypotaurine increases and homotaurine decreases the GABA current

    Seasonal variation in the incidence of preeclampsia and eclampsia in tropical climatic conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Observational studies have demonstrated various correlations between hypertensive disorders of pregnancy and different weather parameters. We aim to study if a correlation exists between the incidence of eclampsia and pre-eclampsia and various weather parameters in the tropical coastal city of Mumbai which has the distinction of having relatively uniform meteorological variables all throughout the year, except for the monsoon season.</p> <p>Methods</p> <p>We retrospectively analysed data from a large maternity centre in Mumbai, India over a period of 36 months from March 1993 to February 1996, recording the incidence of preeclampsia and eclampsia. Meteorological data was acquired from the regional meteorological centre recording the monthly average temperature, humidity, barometric pressure and rainfall during the study period. Study period was then divided into two climate conditions: monsoon season (June to August) and dry season September to May. The incidence of preeclampsia and eclampsia and the meteorological differences between the two seasons were compared.</p> <p>Results</p> <p>Over a 36-month period, a total of 29562 deliveries were recorded, of which 1238 patients developed preeclampsia (4.18%) and 34 developed eclampsia (0.11%). The incidence of preeclampsia did not differ between the monsoon and the dry season (4.3% vs. 4.15%, p = 0.5). The incidence of eclampsia was significantly higher in the monsoon (0.2% vs. 0.08%, p = 0.01). The monsoon was significantly cooler (median maximum temperature 30.7°C vs. 32.3°C, p = 0.01), more humid (median relative humidity 85% vs. 70%, p = 0.0008), and received higher rainfall (median 504.9 mm vs. 0.3 mm, p = 0.0002) than the rest of the year. The median barometric pressure (1005 mb) during the monsoon season was significantly lower than the rest of the year (1012 mb, p < 0.0001).</p> <p>Conclusion</p> <p>In the tropical climate of Mumbai, the incidence of eclampsia is significantly higher in monsoon, when the weather is cooler and humid with a lower barometric pressure than the rest of the year. This effect is not seen with preeclampsia. This strengthens the association of low temperature and high humidity with triggering of eclampsia.</p

    Activation of phospholipase D by osmotic cell swelling

    Get PDF
    In response to osmotic cell swelling, Intestine 407 cells react with a rapid and transient activation of phospholipase D (PLD). To investigate the role of PLD during the regulatory volume decrease, cells were treated with 1-butanol resulting in a depletion of PLD substrates. Activation of volume-regulated anion channels, but not the cell swelling-induced release of taurine, was largely inhibited in the presence of low concentrations of 1-butanol. In addition, hypotonicity-induced exocytosis, ATP release and subsequent endocytosis were found to be largely abrogated. The results support a model of cell vo

    Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells

    Full text link
    A mechanism used by cells to regulate their volume under hypo-osmotic conditions is the release of organic osmolytes, one of which is myo-inositol. The possibility that activation of phospholipase-C-linked receptors can regulate this process has been examined for SH-SY5Y neuroblastoma cells. Incubation of cells with hypo-osmolar buffers (160–250 mOsm) led to a biphasic release of inositol which persisted for up to 4 h and could be inhibited by inclusion of anion channel blockers – results which indicate the involvement of a volume-sensitive organic anion channel. Inclusion of oxotremorine-M, a muscarinic cholinergic agonist, resulted in a marked increase (80–100%) in inositol efflux under hypo-osmotic, but not isotonic, conditions. This enhanced release, which was observed under all conditions of hypo-osmolarity tested, could be prevented by inclusion of atropine. Incubation of the cells with either the calcium ionophore, ionomycin, or the phorbol ester, phorbol 12-myristate 13-acetate, partially mimicked the stimulatory effect of muscarinic receptor activation when added singly, and fully when added together. The ability of oxotremorine-M to facilitate inositol release was inhibited by removal of extracellular calcium, depletion of intracellular calcium or down-regulation of protein kinase C. These results indicate that activation of muscarinic cholinergic receptors can regulate osmolyte release in this cell line.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65241/1/j.1471-4159.2003.02021.x.pd

    Receptor regulation of osmolyte homeostasis in neural cells

    Full text link
    The capacity of cells to correct their volume in response to hyposmotic stress via the efflux of inorganic and organic osmolytes is well documented. However, the ability of cell-surface receptors, in particular G-protein-coupled receptors (GPCRs), to regulate this homeostatic mechanism has received much less attention. Mechanisms that underlie the regulation of cell volume are of particular importance to cells in the central nervous system because of the physical restrictions of the skull and the adverse impact that even small increases in cell volume can have on their function. Increases in brain volume are seen in hyponatraemia, which can arise from a variety of aetiologies and is the most frequently diagnosed electrolyte disorder in clinical practice. In this review we summarize recent evidence that the activation of GPCRs facilitates the volume-dependent efflux of osmolytes from neural cells and permits them to more efficiently respond to small, physiologically relevant, reductions in osmolarity. The characteristics of receptor-regulated osmolyte efflux, the signalling pathways involved and the physiological significance of receptor activation are discussed. In addition, we propose that GPCRs may also regulate the re-uptake of osmolytes into neural cells, but that the influx of organic and inorganic osmolytes is differentially regulated. The ability of neural cells to closely regulate osmolyte homeostasis through receptor-mediated alterations in both efflux and influx mechanisms may explain, in part at least, why the brain selectively retains its complement of inorganic osmolytes during chronic hyponatraemia, whereas its organic osmolytes are depleted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79149/1/jphysiol.2010.190777.pd

    Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route

    Get PDF
    Astroglial cells, due to their passive electrical properties, were long considered subservient to neurons and to merely provide the framework and metabolic support of the brain. Although astrocytes do play such structural and housekeeping roles in the brain, these glial cells also contribute to the brain's computational power and behavioural output. These more active functions are endowed by the Ca2+-based excitability displayed by astrocytes. An increase in cytosolic Ca2+ levels in astrocytes can lead to the release of signalling molecules, a process termed gliotransmission, via the process of regulated exocytosis. Dynamic components of astrocytic exocytosis include the vesicular-plasma membrane secretory machinery, as well as the vesicular traffic, which is governed not only by general cytoskeletal elements but also by astrocyte-specific IFs (intermediate filaments). Gliotransmitters released into the ECS (extracellular space) can exert their actions on neighbouring neurons, to modulate synaptic transmission and plasticity, and to affect behaviour by modulating the sleep homoeostat. Besides these novel physiological roles, astrocytic Ca2+ dynamics, Ca2+-dependent gliotransmission and astrocyte–neuron signalling have been also implicated in brain disorders, such as epilepsy. The aim of this review is to highlight the newer findings concerning Ca2+ signalling in astrocytes and exocytotic gliotransmission. For this we report on Ca2+ sources and sinks that are necessary and sufficient for regulating the exocytotic release of gliotransmitters and discuss secretory machinery, secretory vesicles and vesicle mobility regulation. Finally, we consider the exocytotic gliotransmission in the modulation of synaptic transmission and plasticity, as well as the astrocytic contribution to sleep behaviour and epilepsy

    Two Distinct Modes of Hypoosmotic Medium-Induced Release of Excitatory Amino Acids and Taurine in the Rat Brain In Vivo

    Get PDF
    A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo
    • 

    corecore