5 research outputs found

    Impact of in vitro gastrointestinal digestion on peptide profile and bioactivity of cooked and non-cooked oat protein concentrates

    Get PDF
    Oat (Avena sativa) is one of the most cultivated and consumed cereals worldwide. Recognized among cereals for its high protein content (12% to 24%), it makes it an excellent source of bioactive peptides, which could be modified during processes such as heating and gastrointestinal digestion (GID). This work aims to evaluate the impact of heat treatment on the proteolysis of oat proteins and on the evolution of antioxidant peptide release during in vitro static GID, in terms of comparative analysis between cooked oat protein concentrate (COPC) and non-heated oat protein concentrate (OPC) samples. The protein extraction method and cooking procedure used showed no detrimental effects on protein quality. After GID, the proportion of free amino acids/dipeptides (40% for both samples (OPC and COPC), thus producing peptides with low molecular weight and enhanced bioactivity. Furthermore, during GID, the amino acid profile showed an increase in essential, positively-charged, hydrophobic and aromatic amino acids. At the end of GID, the reducing power of OPC and COPC increased >0.3 and 8-fold, respectively, in comparison to the non-digested samples; while ABTS•+ and DPPH• showed a >20-fold increase. Fe2+ chelating capacity of OPC and COPC was enhanced >4 times; similarly, Cu2+ chelation showed a >19-fold enhancement for OPC and >10 for COPC. β-carotene bleaching activity was improved 0.8 times in OPC and >9 times in COPC; the oxygen radical antioxidant capacity assay increased 2 times in OPC and >4.7 times in COPC, respectively. This study suggests that OPC after cooking and GID positively influenced the nutritional and bioactive properties of oat peptides. Thus, COPC could be used as a functional food ingredient with health-promoting effects, as hydrothermal treatment is frequently used for this type of cereals

    Exploring the vigorous prebiotic potential of hemp bran, an untapped by-product of hemp seed processing industry

    No full text
    Despite the growing interest in hemp (Cannabis sativa L.), resulting from nutritional properties of its seeds and the agronomic advantages of its cultivation, hemp bran is totally unexplored. This investigation is part of the project "Process for the exploitation of hemp (Cannabis sativa) seed by-products, to obtain innovative ingredients for health-promoting functional foods, dietary supplements, and cosmetic and pharmaceutical preparations" funded by the University of Bologna (AlmaIDEA). The project concerns the study of bran coming from the hemp processing industry. Enzymatic, fungal and bacterial bran protein hydrolysates are in vitro studied for their antioxidant and antihypertensive properties and for their impact on the human intestinal microbiota. Process scale-up tests are also provided for a possible application of the protocols, on an industrial scale. The present work concerns the preparation of hemp bran microbial protein hydrolysates in order to evaluate bioactive properties and prebiotic potential

    Comparing the effectiveness of three different biorefinery processes at recovering bioactive products from hemp (Cannabis sativa L.) byproduct

    No full text
    Hemp (Cannabis sativa L.) seeds are considered a nutritional powerhouse, rich in proteins and unsaturated fatty acids. The market for hemp seed food products is growing, due to the loosening of constraints in industrial cultivation. During the food processing chain, the external part of the seed is discarded, although it contains a significant amount of proteins. Converting this material into value-added products with a biorefinery approach could meet the ever-increasing need for sustainable protein sources while reducing food waste. In this study, creating value from hemp byproducts was pursued with three different approaches: (i) chemical extraction followed by enzymatic digestion, (ii) liquid fermentation by strains of Lactobacillus spp., and (iii) solid-state fermentation by Pleurotus ostreatus. The resulting products exhibited a range of in vitro antioxidant and antihypertensive activity, depending on the proteases used for enzymatic digestion, the bacterial strain, and the length of time of the two fermentation processes. These byproducts could be exploited as functional ingredients in the food, pharmaceutical, and cosmetic industries; the suggested biorefinery processes thus represent potential solutions for the development of other proteincontaining byproducts or wastes

    Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba, L.) seed protein hydrolysates and fortified apple juice

    No full text
    Enzymatic hydrolysis of plant-derived proteins can improve their quality by offering opportunities for food applications. In this study, three proteolytic enzymes (pepsin, trypsin, Alcalase®) were used, alone or combined, to produce faba bean protein hydrolysates (PHs). Their functional, nutritional and antioxidant properties were evaluated, and the peptidomic profile was assessed by LC–MS/MS. Hydrolysis improved solubility of faba proteins at acidic and neutral pH, and their antioxidant properties. Peptidomic analysis identified 2031 peptides in the different PHs. Among them, 9 showed 100% homology with previously known antioxidant peptides and several others had antioxidant motifs in their sequences. Sensory data analysis showed that after addition of PHs to apple juice, no significant differences were perceived between control and some of the PHs. This study demonstrates that enzymatic hydrolysis enhances the functional and antioxidant properties of faba bean proteins. Specifically, hydrolysates can be used as functional food ingredients to produce fortified beverages
    corecore