488 research outputs found

    Geometric control of myogenic cell fate.

    Get PDF
    This work combines expertise in stem cell biology and bioengineering to define the system for geometric control of proliferation and differentiation of myogenic progenitor cells. We have created an artificial niche of myogenic progenitor cells, namely, modified extracellular matrix (ECM) substrates with spatially embedded growth or differentiation factors (GF, DF) that predictably direct muscle cell fate in a geometric pattern. Embedded GF and DF signal progenitor cells from specifically defined areas on the ECM successfully competed against culture media for myogenic cell fate determination at a clearly defined boundary. Differentiation of myoblasts into myotubes is induced in growth-promoting medium, myotube formation is delayed in differentiation-promoting medium, and myogenic cells, at different stages of proliferation and differentiation, can be induced to coexist adjacently in identical culture media. This method can be used to identify molecular interactions between cells in different stages of myogenic differentiation, which are likely to be important determinants of tissue repair. The designed ECM niches can be further developed into a vehicle for transplantation of myogenic progenitor cells maintaining their regenerative potential. Additionally, this work may also serve as a general model to engineer synthetic cellular niches to harness the regenerative potential of organ stem cells

    Application of Magnetic Resonance to Assess Lyophilized Drug Product Reconstitution

    Get PDF
    Purpose Dynamic in-situ proton (1H) magnetic resonance imaging (MRI) and 1H T2-relaxometry experiments are described in an attempt to: (i) understand the physical processes, that occur during the reconstitution of lyophilized bovine serum albumen (BSA) and monoclonal antibody (mAb) proteins; and (ii) objectify the reconstitution time. Methods Rapid two-dimensional 1H MRI and diffusion weighted MRI were used to study the temporal changes in solids dissolution and characterise water mass transport characteristics. One-shot T2 relaxation time measurements were also acquired in an attempt to quantify the reconstitution time. Both MRI data and T2-relaxation data were compared to standard visual observations currently adopted by industry. The 1H images were further referenced to MRI calibration data to give quantitative values of protein concentration and, percentage of remaining undissolved solids. Results An algorithmic analysis the 1H T2-relaxation data shows it is possible to classify the reconstitution event into three regimes (undissolved, transitional and dissolved). Moreover, a combined analysis of the 2D 1H MRI and 1H T2-relaxation data gives a unique time point that characterises the onset of a reconstituted protein solution within well-defined error bars. These values compared favourably with those from visual observations. Diffusion weighted MRI showed that low concentration BSA and mAb samples showed distinct liquid-liquid phase separation attributed to two liquid layers with significant density gradients. Conclusions T2 relaxation time distributions (whose interpretation is validated from the 2D 1H MR images) provides a quick and effective framework to build objective, quantitative descriptors of the reconstitution process that facilitate the interpretation of subjective visual observations currently adopted as the standard practice industry.Medimmune PL

    Application of Magnetic Resonance to Assess Lyophilized Drug Product Reconstitution

    Get PDF
    Dynamic in-situ proton (1H) magnetic resonance imaging (MRI) and 1H T2-relaxometry experiments are described in an attempt to: (i) understand the physical processes, that occur during the reconstitution of lyophilized bovine serum albumin (BSA) and monoclonal antibody (mAb) proteins; and (ii) objectify the reconstitution time

    Is there a uniform approach to the management of diffuse parenchymal lung disease (DPLD) in the UK? A national benchmarking exercise

    Get PDF
    BACKGROUND: Benchmarking is the comparison of a process to the work or results of others. We conducted a national benchmarking exercise to determine how UK pulmonologists manage common clinical scenarios in diffuse parenchymal lung disease (DPLD), and to determine current use and availability of investigative resources. We compared management decisions to existing international guidelines. METHODS: Consultant members of the British Thoracic Society were mailed a questionnaire seeking their views on the management of three common scenarios in DPLD. They were asked to choose from various management options for each case. Information was also obtained from the respondents on time served as a consultant, type of institution in which they worked and the availability of a local radiologist and histopathologist with an interest/expertise in thoracic medicine. RESULTS: 370 out of 689 consultants replied (54% response rate). There were many differences in the approach to the management of all three cases. Given a scenario of relapsing pulmonary sarcoidosis in a lady with multiple co-morbidities, half of respondents would institute treatment with a variety of immunosuppressants while a half would simply observe. 42% would refer a 57-year old lady with new onset DPLD for a surgical lung biopsy, while a similar number would not. 80% would have referred her for transplantation, but a fifth would not. 50% of consultants from district general hospitals would have opted for a surgical biopsy compared to 24% from cardiothoracic centres: this may reflect greater availability of a radiologist with special interest in thoracic imaging in cardiothoracic centres, obviating the need for tissue diagnosis. Faced with an elderly male with high resolution CT thorax (HRCT) evidence of usual interstitial pneumonia (UIP), three quarters would observe, while a quarter would start immunosuppressants. 11% would refer for a surgical biopsy. 14% of UK pulmonologists responding to the survey revealed they had no access to a radiologist with an interest in thoracic radiology. CONCLUSION: From our survey, it appears there is a lack of consensus in the management of DPLD. This may reflect lack of evidence, lack of resources or a failure to implement current guidelines

    Continuous Requirement for the Clr4 Complex But Not RNAi for Centromeric Heterochromatin Assembly in Fission Yeast Harboring a Disrupted RITS Complex

    Get PDF
    Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent “priRNAs.” The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3WG) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi–independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4+ in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi–independent factors in the assembly of heterochromatin

    Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia

    Get PDF
    Background Preclinical testing of potential therapies for Duchenne muscular dystrophy (DMD) is conducted predominantly of the mdx mouse. But lack of a detailed quantitative description of the pathology of this animal limits our ability to evaluate the effectiveness of putative therapies or their relevance to DMD. Methods Accordingly, we have measured the main cellular components of muscle growth and regeneration over the period of postnatal growth and early pathology in mdx and wild-type (WT) mice; phalloidin binding is used as a measure of fibre size, myonuclear counts and BrdU labelling as records of myogenic activity. Results We confirm a two-phase postnatal growth pattern in WT muscle: first, increase in myonuclear number over weeks 1 to 3, then expansion of myonuclear domain. Mdx muscle growth lags behind that of WT prior to overt signs of pathology. Fibres are smaller, with fewer myonuclei and smaller myonuclear domains. Moreover, satellite cells are more readily detached from mdx than WT muscle fibres. At 3 weeks, mdx muscles enter a phase of florid myonecrosis, accompanied by concurrent regeneration of an intensity that results in complete replacement of pre-existing muscle over the succeeding 3 to 4 weeks. Both WT and mdx muscles attain maximum size by 12 to 14 weeks, mdx muscle fibres being up to 50% larger than those of WT as they become increasingly branched. Mdx muscle fibres also become hypernucleated, containing twice as many myonuclei per sarcoplasmic volume, as those of WT, the excess corresponding to the number of centrally placed myonuclei. Conclusions The best-known consequence of lack of dystrophin that is common to DMD and the mdx mouse is the conspicuous necrosis and regeneration of muscle fibres. We present protocols for measuring this in terms both of loss of muscle nuclei previously labelled with BrdU and of the intensity of myonuclear labelling with BrdU administered during the regeneration period. Both measurements can be used to assess the efficacy of putative antinecrotic agents. We also show that lack of dystrophin is associated with a number of previously unsuspected abnormalities of muscle fibre structure and function that do not appear to be directly associated with myonecrosis

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    Transgenerational Effects of Parental Larval Diet on Offspring Development Time, Adult Body Size and Pathogen Resistance in Drosophila melanogaster

    Get PDF
    Environmental conditions experienced by parents are increasingly recognized to affect offspring performance. We set out to investigate the effect of parental larval diet on offspring development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. Flies for the parental generation were raised on either poor or standard diet and then mated in the four possible sex-by-parental diet crosses. Females that were raised on poor food produced larger offspring than females that were raised on standard food. Furthermore, male progeny sired by fathers that were raised on poor food were larger than male progeny sired by males raised on standard food. Development times were shortest for offspring whose one parent (mother or the father) was raised on standard and the other parent on poor food and longest for offspring whose parents both were raised on poor food. No evidence for transgenerational effects of parental diet on offspring disease resistance was found. Although paternal effects have been previously demonstrated in D. melanogaster, no earlier studies have investigated male-mediated transgenerational effects of diet in this species. The results highlight the importance of not only considering the relative contribution each parental sex has on progeny performance but also the combined effects that the two sexes may have on offspring performance

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy
    corecore