621 research outputs found

    Asymmetrical neural processing of amplitude modulated sounds: a psychophysical, fMRI and TMS investigation

    Get PDF
    Human speech is the most behaviourally important and complex signal that the human brain is required to process yet it does so with remarkable ease. Speech is composed of highly complex amplitude modulations over time and these modulations are known to be crucial for intelligibility. There is evidence for hemispheric asymmetries in processing auditory modulations over different timescales and multiple models have been proposed to account for these. The procedure by which the auditory system extracts and processes these modulations is not fully understood. Psychophysical, neuroimaging and non-invasive neurostimulation techniques can be combined in complementary ways to potentially provide unique insights into this problem. Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are relatively novel methods that have not been previously applied in combination to investigate amplitude modulation processing. Three psychophysical and fMRI-guided TMS studies were conducted in order to address the following research questions. Firstly, is fMRI-guided TMS an effective method for modulating AM processing? Secondly, are different TMS protocols more or less effective at modulating AM processing? Finally, is fMRI-guided TMS an effective method for further understanding the functional asymmetry of speech processing? Online dual pulse TMS to right auditory cortex was shown to be effective at modulating 4 Hz AM detection accuracy. State-dependent TMS to left auditory cortex was shown to be effective at modulating 40 Hz AM detection accuracy, but the effects were complex. Continuous theta burst stimulation was not shown to be effective at modulating AM depth discrimination ability. It was thus found that fMRI-guided TMS can be an effective tool for modulating AM processing, however, efficacy differs depending on the specific TMS protocol used. Further, fMRI-guided TMS can be used to investigate functional asymmetry of speech processing, however some important caveats apply

    Significantly Enhanced DNA Thermal Stability Resulting from Porphyrin H-Aggregate Formation in the Minor Grove of the Duplex

    Get PDF
    (Figure Presented) Too groovy: The covalent attachment of up to four porphyrins to complementary strands led to the formation of DNA porphyrin zippers with significantly increased DNA duplex stability. This is a result of H-aggregate formation in the minor groove. To the best of our knowledge this is the first report showing such a significant thermal duplex stabilization

    Towards Forward Secure Internet Traffic

    Full text link
    Forward Secrecy (FS) is a security property in key-exchange algorithms which guarantees that a compromise in the secrecy of a long-term private-key does not compromise the secrecy of past session keys. With a growing awareness of long-term mass surveillance programs by governments and others, FS has become widely regarded as a highly desirable property. This is particularly true in the TLS protocol, which is used to secure Internet communication. In this paper, we investigate FS in pre-TLS 1.3 protocols, which do not mandate FS, but still widely used today. We conduct an empirical analysis of over 10 million TLS servers from three different datasets using a novel heuristic approach. Using a modern TLS client handshake algorithms, our results show 5.37% of top domains, 7.51% of random domains, and 26.16% of random IPs do not select FS key-exchange algorithms. Surprisingly, 39.20% of the top domains, 24.40% of the random domains, and 14.46% of the random IPs that do not select FS, do support FS. In light of this analysis, we discuss possible paths toward forward secure Internet traffic. As an improvement of the current state, we propose a new client-side mechanism that we call "Best Effort Forward Secrecy" (BEFS), and an extension of it that we call "Best Effort Forward Secrecy and Authenticated Encryption" (BESAFE), which aims to guide (force) misconfigured servers to FS using a best effort approach. Finally, within our analysis, we introduce a novel adversarial model that we call "discriminatory" adversary, which is applicable to the TLS protocol

    Automatic memory processes in normal ageing and Alzheimer’s disease

    Get PDF
    This study examined the contribution of automatic and controlled uses of memory to stem completion in young, middle-aged and older adults, and compared these data with a study involving patients with Alzheimer’s disease (AD) who performed the same task (Hudson and Robertson, 2007). In an inclusion task participants aimed to complete three-letter word stems with a previously studied word, in an exclusion task the aim was to avoid using studied words to complete stems. Performances under inclusion and exclusion conditions were contrasted to obtain estimates of controlled and automatic memory processes using process-dissociation calculations (Jacoby, 1991). An age-related decline, evident from middle age was observed for the estimate of controlled processing, whereas the estimate of automatic processing remained invariant across the age groups. This pattern stands in contrast to what is observed in AD, where both controlled and automatic processes have been shown to be impaired. Therefore, the impairment in memory processing on stem completion that is found in AD is qualitatively different from that observed in normal ageing

    The Atacama Cosmology Telescope: Cross Correlation with Planck maps

    Get PDF
    We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACTxPlanck cross-spectra. We use these cross-correlations to calibrate the ACT data at 148 and 218 GHz, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.Comment: 9 pages, 8 figure

    The Atacama Cosmology Telescope: Dusty Star-Forming Galaxies and Active Galactic Nuclei in the Southern Survey

    Get PDF
    We present a catalog of 191 extragalactic sources detected by the Atacama Cosmology Telescope (ACT) at 148 GHz and/or 218 GHz in the 2008 Southern survey. Flux densities span 14-1700 mJy, and we use source spectral indices derived using ACT-only data to divide our sources into two sub-populations: 167 radio galaxies powered by central active galactic nuclei (AGN), and 24 dusty star-forming galaxies (DSFGs). We cross-identify 97% of our sources (166 of the AGN and 19 of the DSFGs) with those in currently available catalogs. When combined with flux densities from the Australian Telescope 20 GHz survey and follow-up observations with the Australia Telescope Compact Array, the synchrotron-dominated population is seen to exhibit a steepening of the slope of the spectral energy distribution from 20 to 148 GHz, with the trend continuing to 218 GHz. The ACT dust-dominated source population has a median spectral index of 3.7+0.62-0.86, and includes both local galaxies and sources with redshifts as great as 5.6. Dusty sources with no counterpart in existing catalogs likely belong to a recently discovered subpopulation of DSFGs lensed by foreground galaxies or galaxy groups.Comment: 13 pages, 8 figures, 4 table

    UKRN Open Research Training Resources and Priorities Working Paper

    Get PDF
    UKRN Open Research Programme has released its first working paper about training priorities and resources aimed at accelerating the uptake of high quality open research practices

    The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution

    Get PDF
    We present a detection of the unnormalized skewness induced by the thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope (ACT) 148 GHz cosmic microwave background temperature maps. Contamination due to infrared and radio sources is minimized by template subtraction of resolved sources and by constructing a mask using outlying values in the 218 GHz (tSZ-null) ACT maps. We measure = -31 +- 6 \mu K^3 (measurement error only) or +- 14 \mu K^3 (including cosmic variance error) in the filtered ACT data, a 5-sigma detection. We show that the skewness is a sensitive probe of sigma_8, and use analytic calculations and tSZ simulations to obtain cosmological constraints from this measurement. From this signal alone we infer a value of sigma_8= 0.79 +0.03 -0.03 (68 % C.L.) +0.06 -0.06 (95 % C.L.). Our results demonstrate that measurements of non-Gaussianity can be a useful method for characterizing the tSZ effect and extracting the underlying cosmological information.Comment: 9 pages, 5 figures. Replaced with version accepted by Phys. Rev. D, with improvements to the likelihood function and the IR source treatment; only minor changes in the result

    The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data

    Full text link
    [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding \sigma_8 = 0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain \Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle Physic

    The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    Get PDF
    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6-sigma detection significance.Comment: 21 pages; 20 figures, Submitted to JCAP, some typos correcte
    • …
    corecore