210 research outputs found

    Stable ultrahigh-density magneto-optical recordings using introduced linear defects

    Full text link
    The stability of data bits in magnetic recording media at ultrahigh densities is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized spin domains, which erase the stored information. Media that are magnetized perpendicular to the plane of the film, such as ultrathin cobalt films or multilayered structures, are more stable against thermal self-erasure than conventional memory devices. In this context, magneto-optical memories seem particularly promising for ultrahigh-density recording on portable disks, and bit densities of \sim100 Gbit inch2^{-2} have been demonstrated using recent advances in the bit writing and reading techniques. But the roughness and mobility of the magnetic domain walls prevents closer packing of the magnetic bits, and therefore presents a challenge to reaching even higher bit densities. Here we report that the strain imposed by a linear defect in a magnetic thin film can smooth rough domain walls over regions hundreds of micrometers in size, and halt their motion. A scaling analysis of this process, based on the generic physics of disorder-controlled elastic lines, points to a simple way by which magnetic media might be prepared that can store data at densities in excess of 1 Tbit inch2^{-2}.Comment: 5 pages, 4 figures, see also an article in TRN News at http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm

    Validity of the second law in nonextensive quantum thermodynamics

    Full text link
    The second law of thermodynamics in nonextensive statistical mechanics is discussed in the quantum regime. Making use of the convexity property of the generalized relative entropy associated with the Tsallis entropy indexed by q, Clausius' inequality is shown to hold in the range of q between zero and two. This restriction on the range of the entropic index, q, is purely quantum mechanical and there exists no upper bound of q for validity of the second law in classical theory.Comment: 12 pages, no figure

    A note on entropic uncertainty relations of position and momentum

    Full text link
    We consider two entropic uncertainty relations of position and momentum recently discussed in literature. By a suitable rescaling of one of them, we obtain a smooth interpolation of both for high-resolution and low-resolution measurements respectively. Because our interpolation has never been mentioned in literature before, we propose it as a candidate for an improved entropic uncertainty relation of position and momentum. Up to now, the author has neither been able to falsify nor prove the new inequality. In our opinion it is a challenge to do either one.Comment: 2 pages, 2 figures, 2 references adde

    Does a Computer have an Arrow of Time?

    Get PDF
    In [Sch05a], it is argued that Boltzmann's intuition, that the psychological arrow of time is necessarily aligned with the thermodynamic arrow, is correct. Schulman gives an explicit physical mechanism for this connection, based on the brain being representable as a computer, together with certain thermodynamic properties of computational processes. [Haw94] presents similar, if briefer, arguments. The purpose of this paper is to critically examine the support for the link between thermodynamics and an arrow of time for computers. The principal arguments put forward by Schulman and Hawking will be shown to fail. It will be shown that any computational process that can take place in an entropy increasing universe, can equally take place in an entropy decreasing universe. This conclusion does not automatically imply a psychological arrow can run counter to the thermodynamic arrow. Some alternative possible explana- tions for the alignment of the two arrows will be briefly discussed.Comment: 31 pages, no figures, publication versio

    Coherent Schwinger Interaction from Darboux Transformation

    Full text link
    The exactly solvable scalar-tensor potential of the four-component Dirac equation has been obtained by the Darboux transformation method. The constructed potential has been interpreted in terms of nucleon-nucleon and Schwinger interactions of neutral particles with lattice sites during their channeling Hamiltonians of a Schwinger type is obtained by means of the Darboux transformation chain. The analitic structure of the Lyapunov function of periodic continuation for each of the Hamiltonians of the family is considered.Comment: 12 pages, Latex, six figures; six sections, one figure adde

    How to obtain a covariant Breit type equation from relativistic Constraint Theory

    Get PDF
    It is shown that, by an appropriate modification of the structure of the interaction potential, the Breit equation can be incorporated into a set of two compatible manifestly covariant wave equations, derived from the general rules of Constraint Theory. The complementary equation to the covariant Breit type equation determines the evolution law in the relative time variable. The interaction potential can be systematically calculated in perturbation theory from Feynman diagrams. The normalization condition of the Breit wave function is determined. The wave equation is reduced, for general classes of potential, to a single Pauli-Schr\"odinger type equation. As an application of the covariant Breit type equation, we exhibit massless pseudoscalar bound state solutions, corresponding to a particular class of confining potentials.Comment: 20 pages, Late

    Dynamical confinement in bosonized QCD2

    Full text link
    In the bosonized version of two dimensional theories non trivial boundary conditions (topology) play a crucial role. They are inevitable if one wants to describe non singlet states. In abelian bosonization, color is the charge of a topological current in terms of a non-linear meson field. We show that confinement appears as the dynamical collapse of the topology associated with its non trivial boundary conditions.Comment: 11 pages, figures not included, ftuv/92-

    Automatic Classification of Roof Shapes for Multicopter Emergency Landing Site Selection

    Full text link
    Geographic information systems (GIS) now provide accurate maps of terrain, roads, waterways, and building footprints and heights. Aircraft, particularly small unmanned aircraft systems, can exploit additional information such as building roof structure to improve navigation accuracy and safety particularly in urban regions. This paper proposes a method to automatically label building roof shape types. Satellite imagery and LIDAR data from Witten, Germany are fed to convolutional neural networks (CNN) to extract salient feature vectors. Supervised training sets are automatically generated from pre-labeled buildings contained in the OpenStreetMap database. Multiple CNN architectures are trained and tested, with the best performing networks providing a condensed feature set for support vector machine and decision tree classifiers. Satellite and LIDAR data fusion is shown to provide greater classification accuracy than through use of either data type individually
    corecore