It is shown that, by an appropriate modification of the structure of the
interaction potential, the Breit equation can be incorporated into a set of two
compatible manifestly covariant wave equations, derived from the general rules
of Constraint Theory. The complementary equation to the covariant Breit type
equation determines the evolution law in the relative time variable. The
interaction potential can be systematically calculated in perturbation theory
from Feynman diagrams. The normalization condition of the Breit wave function
is determined. The wave equation is reduced, for general classes of potential,
to a single Pauli-Schr\"odinger type equation. As an application of the
covariant Breit type equation, we exhibit massless pseudoscalar bound state
solutions, corresponding to a particular class of confining potentials.Comment: 20 pages, Late