77 research outputs found

    ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control

    Get PDF
    Synovial sarcoma is an aggressive malignancy with no effective treatments for patients with metastasis. The synovial sarcoma fusion SS18-SSX, which recruits the SWI/SNF-BAF chromatin remodeling and polycomb repressive complexes, results in epigenetic activation of FGF receptor (FGFR) signaling. In genetic FGFR-knockout models, culture, and xenograft synovial sarcoma models treated with the FGFR inhibitor BGJ398, we show that FGFR1, FGFR2, and FGFR3 were crucial for tumor growth. Transcriptome analyses of BGJ398-treated cells and histological and expression analyses of mouse and human synovial sarcoma tumors revealed prevalent expression of two ETS factors and FGFR targets, ETV4 and ETV5. We further demonstrate that ETV4 and ETV5 acted as drivers of synovial sarcoma growth, most likely through control of the cell cycle. Upon ETV4 and ETV5 knockdown, we observed a striking upregulation of DUX4 and its transcriptional targets that activate the zygotic genome and drive the atrophy program in facioscapulohumeral dystrophy patients. In addition to demonstrating the importance of inhibiting all three FGFRs, the current findings reveal potential nodes of attack for the cancer with the discovery of ETV4 and ETV5 as appropriate biomarkers and molecular targets, and activation of the embryonic DUX4 pathway as a promising approach to block synovial sarcoma tumors

    Meta-analysis fine-mapping is often miscalibrated at single-variant resolution

    Get PDF
    Funding Information: We acknowledge all the participants and researchers of the 23 biobanks that have contributed to the GBMI. Biobank-specific acknowledgments are included in the Data S3 . We thank H. Huang, A.R. Martin, B.M. Neale, Y. Okada, K. Tsuo, J.C. Ulirsch, Y. Wang, and all the members of Finucane and Daly labs for their helpful feedback. M.K. was supported by a Nakajima Foundation Fellowship and the Masason Foundation . H.K.F. was funded by NIH grant DP5 OD024582 . Publisher Copyright: © 2022 The Author(s)Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWASs). Fine-mapping of meta-analysis studies is typically performed as in a single-cohort study. Here, we first demonstrate that heterogeneity (e.g., of sample size, phenotyping, imputation) hurts calibration of meta-analysis fine-mapping. We propose a summary statistics-based quality-control (QC) method, suspicious loci analysis of meta-analysis summary statistics (SLALOM), that identifies suspicious loci for meta-analysis fine-mapping by detecting outliers in association statistics. We validate SLALOM in simulations and the GWAS Catalog. Applying SLALOM to 14 meta-analyses from the Global Biobank Meta-analysis Initiative (GBMI), we find that 67% of loci show suspicious patterns that call into question fine-mapping accuracy. These predicted suspicious loci are significantly depleted for having nonsynonymous variants as lead variant (2.7×; Fisher's exact p = 7.3 × 10−4). We find limited evidence of fine-mapping improvement in the GBMI meta-analyses compared with individual biobanks. We urge extreme caution when interpreting fine-mapping results from meta-analysis of heterogeneous cohorts.Peer reviewe

    Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus

    Get PDF
    The release of GABA from local interneurons in the dorsal lateral geniculate nucleus (dLGN-INs) provides inhibitory control during visual processing within the thalamus. It is commonly assumed that this important class of interneurons originates from within the thalamic complex, but we now show that during early postnatal development Sox14/Otx2-expressing precursor cells migrate from the dorsal midbrain to generate dLGN-INs. The unexpected extra-diencephalic origin of dLGN-INs sets them apart from GABAergic neurons of the reticular thalamic nucleus. Using optogenetics we show that at increased firing rates tectal-derived dLGN-INs generate a powerful form of tonic inhibition that regulates the gain of thalamic relay neurons through recruitment of extrasynaptic high-affinity GABA(A) receptors. Therefore, by revising the conventional view of thalamic interneuron ontogeny we demonstrate how a previously unappreciated mesencephalic population controls thalamic relay neuron excitability.Peer reviewe

    Polygenic burden has broader impact on health, cognition, and socioeconomic outcomes than most rare and high-risk copy number variants

    Get PDF
    Copy number variants (CNVs) are associated with syndromic and severe neurological and psychiatric disorders (SNPDs), such as intellectual disability, epilepsy, schizophrenia, and bipolar disorder. Although considered high-impact, CNVs are also observed in the general population. This presents a diagnostic challenge in evaluating their clinical significance. To estimate the phenotypic differences between CNV carriers and non-carriers regarding general health and well-being, we compared the impact of SNPD-associated CNVs on health, cognition, and socioeconomic phenotypes to the impact of three genome-wide polygenic risk score (PRS) in two Finnish cohorts (FINRISK, n = 23,053 and NFBC1966, n = 4895). The focus was on CNV carriers and PRS extremes who do not have an SNPD diagnosis. We identified high-risk CNVs (DECIPHER CNVs, risk gene deletions, or large [>1 Mb] CNVs) in 744 study participants (2.66%), 36 (4.8%) of whom had a diagnosed SNPD. In the remaining 708 unaffected carriers, we observed lower educational attainment (EA; OR = 0.77 [95% CI 0.66-0.89]) and lower household income (OR = 0.77 [0.66-0.89]). Income-associated CNVs also lowered household income (OR = 0.50 [0.38-0.66]), and CNVs with medical consequences lowered subjective health (OR = 0.48 [0.32-0.72]). The impact of PRSs was broader. At the lowest extreme of PRS for EA, we observed lower EA (OR = 0.31 [0.26-0.37]), lower-income (OR = 0.66 [0.57-0.77]), lower subjective health (OR = 0.72 [0.61-0.83]), and increased mortality (Cox's HR = 1.55 [1.21-1.98]). PRS for intelligence had a similar impact, whereas PRS for schizophrenia did not affect these traits. We conclude that the majority of working-age individuals carrying high-risk CNVs without SNPD diagnosis have a modest impact on morbidity and mortality, as well as the limited impact on income and educational attainment, compared to individuals at the extreme end of common genetic variation. Our findings highlight that the contribution of traditional high-risk variants such as CNVs should be analyzed in a broader genetic context, rather than evaluated in isolation.Peer reviewe

    Talousmetsien luonnonhoidon tehostamisen vaihtoehdot

    Get PDF
    Talousmetsien luonnonhoito on yleisnimitys toimille, joilla toteutetaan yleensÀ samanaikaisesti puuntuotannolle rinnakkaisia luonnon monimuotoisuutta tukevia toimenpiteitÀ met-sÀnkÀsittelyssÀ. Talousmetsien luonnonhoidon keinovalikoima on laaja. Osa toimista on lÀhes maksuttomia metsÀnomistajalle mutta toiset merkittÀviÀ kustannuksiltaan. Luonnonhoitoa metsien kÀsittelyn yhteydessÀ olisi mahdollista tehostaa nykyisestÀ. Kytkeytyneisyyden ja alueellisten ominaispiirteiden huomiointi luonnonhoidon toimien suunnittelussa ja toteuttamisessa lisÀisivÀt luonnonhoidon toimien vaikuttavuutta. Kaikkiaan tehostaminen edellyttÀÀ luonnonhoidon laaja-alaista huomioimista metsÀalan koko toimintakentÀssÀ. Luonnonhoidon lainsÀÀdÀnnön, ohjeistuksen ja kannustimien tulisi tukea metsÀnomistajia ja metsÀalan operatiivisia toimijoita heidÀn jokapÀivÀisessÀ työssÀÀn ja pÀÀtöksenteossa. Uusia toimintamalleja tulisi kehittÀÀ ja testata. Luonnonhoidon ekologinen, sosiaalinen ja taloudellinen vaikuttavuus tehdÀÀn nÀkyvÀksi hyvin valituilla mittareilla ja seurannalla. Uutta tutkimustietoa luonnonhoidon vaikuttavuudesta saadaan ja tarvitaan meneillÀÀn olevista pitkÀkestoisista tutkimussarjoista.TÀmÀ julkaisu on toteutettu osana valtioneuvoston selvitys- ja tutkimussuunnitelman toimeenpanoa.(tietokayttoon.fi) Julkaisun sisÀllöstÀ vastaavat tiedon tuottajat, eikÀ tekstisisÀltö vÀlttÀmÀttÀ edusta valtioneuvoston nÀkemystÀ

    Global Biobank Meta-analysis Initiative:Powering genetic discovery across human disease

    Get PDF
    Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)—a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.</p

    Global Biobank Meta-analysis Initiative : Powering genetic discovery across human disease

    Get PDF
    Funding Information: The work of the contributing biobanks was supported by numerous grants from governmental and charitable bodies. Biobank-specific acknowledgments and more detailed acknowledgments are included in Data S2. Initiative management, S.B.C. J.C. N.J.C. M.J.D. E.E.K. A.R.M. B.M.N. Y.O. A.V.P. D.A.v.H. R.G.W. C.J.W. W.Z. and S.Z.; individual biobank analysis, A.B. Y.B. B.M.B. C.D.B. S.C. T.-T.C. K.C. S.M.D. M.D. G.H.d.B. Y.D. N.J.D. M.-J.F. Y.-C.A.F. S.F. V.L.F. L.G.F. E.R.G. T.R.G. D.H.G. C.R.G. G.G.-A. S.E.G. L.A.G. C.H. J.B.H. W.E.H. H.H. K.H. N.I. A.I. R.J. M. Kurki, J.K. N.K. E.E.K. J.T.K. M. Kanai, T.L. K.L. M.H.L. S.L. K.L. Y.-F.L. V.L.F. R.J.F.L. E.A.L.-M. A.R.-M. S.M.-G. R.M. R.E.M. H.C.M. A.R.M. Y.M. H.M. S.E.M. I.Y.M. B.M. S.M. K.N. S.N. M.A.N.-A. K.N. Y.O. P.P. A.L.-P. A.P. B.P. S.P. M.H.P. D.J.R. N.R. M.D.R. A.R. C.S. S.S. S.S.S. J.A.S. P.S. I.S. T.T. R.T. K.T. J.U. D.A.v.H. B.V. M.V. Y.V. J.M.V. R.G.W. Y.W. S.J.W. B.N.W. K.-H.H.W. M.Z. X.Z. and S.Z.; individual biobank management, N.A. A.A.T. K.M.A.-D. P.A. K.C.B. M. Boehnke, M. Boezen, C.D.B. A.C. Z.C. C.-Y.C. J.C. N.J.C. S.M.D. S.F. Y.-C.A.F. S.F. E.F. T.G. C.R.G. C.J.G. Y.G. H.H. K.A.H. K.H. S.I.I. N.M.J. N.K. E.E.K. J.T.K. C.L. M.H.L. M.T.M.L. L.L. K.L. Y.-F.L. R.J.F.L. J.L. S.M. Y.M. K.M. I.Y.M. Y.O. C.M.O. A.V.P. B.P. D.J.P. D.J.R. M.D.R. S.S. J.W.S. H.S. K.S. T.T. U.T. R.C.T. D.A.v.H. M.V. R.G.W. D.C.W. C.W. J.W. M.Z. X.Z. and S.Z.; study design and interpretation of results, A.B. M. Boehnke, M. Boezen, B.M.B. T.-T.C. C.-Y.C. M.J.D. G.D.S. N.J.D. S.F. M.-J.F. H.K.F. E.R.G. A.G. T.G. J.B.H. J.H. K.H. R.J. M.K. E.E.K. T.K. C.M.L. V.L.F. E.A.L.-M. A.R.M. S.N. B.M.N. C.M.O. J.J.P. B.P. N.R. H.R. J.A.S. I.S. K.T. D.A.v.H. R.G.W. Y.W. D.C.W. S.J.W. C.J.W. B.N.W. J.W. K.-H.H.W. M.Z. H.Z. J.Z. W.Z. X.Z. and S.Z.; drafted and edited the paper, A.B. M. Boehnke, M. Boezen, M.J.D. G.H.d.B. N.J.D. T.R.G. J.B.H. N.I. N.M.J. M.K. V.L.F. S.M. A.R.M. H.M. S.N. B.M.N. C.M.O. B.P. H.R. C.S. J.A.S. J.W.S. K.T. Y.W. D.C.W. C.J.W. K.-H.H.W. H.Z. J.Z. W.Z. and S.Z.; primary meta-analysis and quality control, M.J.D. H.K.F. M. Kanai, J.K. J.T.K. M. Kurki, M.M. B.M.N. C.J.W. K.-H.H.W. and W.Z.; drug discovery: S.N. T.K. K.-H.H.W. W.Z. and Y.O.; fine mapping, M. Kanai, W.Z. M.J.D. and H.K.F.; polygenic risk score, Y.W. S.N. E.A.L.-M. S.K. K.T. K.L. M. Kanai, W.Z. K.W. M.-J.F. L.B. P.A. P.D. V.L.F. R.M. Y.M. B.B. S.S. J.U. E.R.G. N.J.C. I.S. Y.O. A.R.M. and J.B.H.; proteome-wide Mendelian randomization, H.Z. H.R. A.B. G.H. G.D.S. B.M.B. W.Z. B.M.N. T.R.G. and J.Z.; transcriptome-wide association study, A.B. J.B.H. W.Z. J.Z. M. Kanai, B.P. E.R.G. and N.J.C.; asthma, K.T. W.Z. Y.W. M. Kanai, S.N. Y.O. B.M.N. M.J.D. and A.R.M.; heart failure, K.-H.H.W. N.J.D. B.N.W. I.S. S.E.G. J.B.H. N.J.C. M.P. R.J.F.L. M.J.D. B.M.N. W.Z. W.E.H. and C.J.W.; idiopathic pulmonary fibrosis, J.J.P. W.Z. M.J.D. J.T.K. N.J.C. and J.B.H.; primary open-angle glaucoma, V.L.F. A.B. W.Z. Y.W. K.L. M. Kanai, E.A.L.-M. P.S. R.T. X.Z. S.N. S.S. Y.O. N.I. S.M. H.S. I.S. C.W. A.R.M. E.R.G. N.M.J. N.J.C. and J.B.H.; stroke, I.S. K.-H.H.W. W.H. B.N.W. W.Z. J.E.H. A.P. B.B. A.H.S. M.E.G. R.G.W. K.H. C.K. S.Z. M.J.D. B.M.N. and C.J.W.; venous thromboembolism, B.N.W. I.S. K.-H.H.W. B.B. V.L.F. K.T. M.D. B.N. W.Z. J.A.S. and C.J.W. All authors reviewed the manuscript. M.J.D. is a founder of Maze Therapeutics. B.M.N. is a member of the scientific advisory board at Deep Genomics and a consultant for Camp4 Therapeutics, Takeda Pharmaceutical, and Biogen. The spouse of C.J.W. works at Regeneron Pharmaceuticals. C.-Y.C. is employed by Biogen. C.R.G. owns stock in 23andMe, Inc. T.R.G. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. E.E.K. has received speaker fees from Regeneron, Illumina, and 23andMe and is a member of the advisory board for Galateo Bio. R.E.M. has received speaker fees from Illumina and is a scientific advisor to the Epigenetic Clock Development Foundation. G.D.S. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. K.S. and U.T. are employed by deCODE Genetics/Amgen, Inc. J.Z. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. S.M. is a co-founder of and holds stock in Seonix Bio. Publisher Copyright: © 2022Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)—a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.Peer reviewe

    Lifetime measurements of excited states in Âč⁶³W and the implications for the anomalous B(E2) ratios in transitional nuclei

    Get PDF
    This letter reports lifetime measurements of excited states in the odd-N nucleus 163W using the recoil-distance Doppler shift method to probe the core polarising effect of the i13/2 neutron orbital on the underlying soft triaxial even-even core. The ratio B(E2:21/2âș → 17/2âș)/B(E2:17/2âș → 13/2âș) is consistent with the predictions of the collective rotational model. The deduced B(E2) values provide insights into the validity of collective model predictions for heavy transitional nuclei and a geometric origin for the anomalous B(E2) ratios observed in nearby even-even nuclei is proposed
    • 

    corecore