47 research outputs found

    Desain Pembelajaran Matematika Bagi Calon Guru Matematika (Mathematics Learning Design for Pre‐Service Mathematics Teacher)

    Get PDF
    Pembelajaran matematika bagi calon guru matematika melibatkan sedikitnya tiga aspek proses, yaitu; konstruksi, refleksi dan komunikasi. Konstruksi bertujuan agar calon guru "mengalami" belajar. refleksi bertujuan untuk menginternalisasi pengetahuan yang telah dikonstruk dan komunikasi bertujuan agar pengetahuan itu menjadi informasi yang bermakna. Makalah ini membahas hasil ujicoba desain pembelajaran yang berorientasi kepada membangun ketiga aspek kemampuan itu

    Developing Mathematics Teaching Material “Investigative” for Pre-Service Mathematics Teacher

    Get PDF
    Teaching material are significant component for supporting teaching-learning activities. Based on the teaching material, goal and the kinds of learning activities are determined. Also, the interaction among learning components are determined by teaching material design. Therefore, teaching material have central role that ascertain learning activities. Unfortunately, current teaching material not continually suitable with the newest situation or real class situation. Therefore it is needed continous effort to develop so that it is able to overcome the dynamic learning situation. Based on the reason this reseach focus on developing teaching material that is able to facilitate the learner are able to do investigation, and in this article named as Investigative Teaching Material. Try out result recommend that, activities structure of investigation must be “strong structured” and “strong organized”. The detail of the activities are as follow: (information display, (2) preliminaries activities from real situation, (3) investigation activities in semi abstract level, (4) generalization, and (5) internalization. Key Words: Developing, Mathematics Teaching Material, Mathematics Teache

    Efforts to Build Students' Mathematical Problem-solving Ability Through Problem-based Learning Models on Number Operation Materials in Class VII SMPN 25 Malang

    Get PDF
    The background of this research is students’ low mathematical problem-solving ability. The purpose of this study was to determine the efforts to build mathematical problem-solving abilities of junior high school students, especially in the number operations material caused by the lack of attention and involvement of students in the learning process, students’ difficulties in understanding story problems related to contextual problems, and students who were less active and creative. in constructing problem-solving ideas. Therefore, we need a learning model that can build students’ mathematical problem-solving skills, namely the problem-based learning model. This research was conducted at SMPN 25 Malang as classroom action research (CAR) which refers to the MC Taggart learning model which was carried out for two cycles. The study was carried out on 31 students of class VII.C. The results of this study indicate that the test results of students’ mathematical problem-solving abilities have changed for the better from cycle I to cycle II, where in cycle II the average score has reached 76 and the criteria for completeness have exceeded the mastery limit, which is 87.10%. In this case, it can be concluded that the application of the problem-based learning model can build the mathematical solving abilities of students in class VII-C of SMPN 25 Malang. Keywords: problem-based learning, mathematical problem-solving, number operation

    Application of Problem-based Learning Model to Improve Students' Problem-solving Skills of Class VII-E SMP Negeri 25 Malang

    Get PDF
    The purpose of this study was to improve students’ mathematical problem-solving skills on the material of numbers through the problem-based learning model in class VII-E of SMP Negeri 25 Malang. Classroom action research (CAR) was applied in this study. The study was carried out on 28 students of class VII-E of SMP Negeri 25 Malang. This research was conducted in 2 cycles. Results from the first cycle of classical completeness tests of 64.29% increased to 85.71% in the second cycle. In the first cycle, the highest problem-solving aspect was obtained in the aspect of understanding the problem with a percentage of 83.93% and categorized as complete, while the lowest problem-solving aspect was obtained in the re-examining aspect with a percentage of 59.29% and categorized as incomplete. In the second cycle, the highest problem-solving aspect was obtained in the aspect of understanding the problem with a percentage of 92.86% and categorized as complete, while the lowest problem-solving aspect was obtained in the re-examining aspect with a percentage of 70.24% and categorized as incomplete. It is possible to say that students’ ability to solve mathematical problems had increased in the class VII-E of SMP Negeri 25 Malang during the academic year of 2022/2023, allowing the problem-based learning model to be used as an alternative method to improve students’ ability to solve mathematical problems. Keywords: problem-based learning, Kemampuan Pemecahan Masalah, Ketuntasan Klasika

    Penalaran Imitatif Siswa Berkemampuan Matematika Tinggi dalam Memahami Sistem Persamaan Linear Dua Variabel

    Get PDF
    Penelitian ini bertujuan untuk mendeskripsikan penalaran imitatif siswa SMP dalam memahami sistem persamaan linear dua variabel. Jenis penelitian ini merupakan penelitian deskriptif dengan pendekatan kualitatif. Penelitian ini dilaksanakan pada siswa kelas VIII E SMPN 7 Pasuruan tahun ajaran 2022/2023. Dua subjek dalam penelitian ini dipilih dengan kriteria jawaban tes tuntas dan benar dengan menunjukkan adanya tiruan prosedur, menggunakan metode SPLDV yang sama, serta mempertimbangkan kemampuan siswa mengomunikasikan pemikirannya saat proses wawancara dan keteraturan penyusunan jawaban pada lembar pekerjaan tes. Hasil penelitian menunjukkan bahwa pada unsur berlandasan matematika, subjek mengerti susunan langkah-langkah dalam menyelesaikan soal, tetapi dalam menerapkannya subjek hanya fokus untuk mengecek proses perhitungannya saja tanpa memperhatikan kelogisan dari langkah pemisalan variabel dan kesimpulan yang dibuat. Pada unsur peniruan prosedur, subjek menyelesaikan soal dengan mencontoh prosedur penyelesaian soal rutin SPLDV dan berkeyakinan bahwa prosedur tersebut hanya dapat diterapkan dengan mengikuti aturan pengerjaan yang telah dijelaskan oleh guru. Sedangkan pada unsur argumentasi logis, kedua subjek memiliki kemampuan yang berbeda dalam memberikan alasan logis dari prosedur penyelesaian yang telah dilakukan. Namun dalam hal membuktikan kebenaran kesimpulan, kedua subjek sama-sama tidak dapat menghubungkan jawaban pada pertanyaan sebelumnya untuk menjelaskan bukti terkait rincian uang untuk membeli bahan kue bipang yang dibutuhkan jika diketahui jumlah uang yang dikeluarkan

    Profil Pemecahan Masalah Siswa Berdasarkan Tahapan Polya Ditinjau dari Kecerdasan Emosional

    Get PDF
    Pemecahan masalah merupakan hal yang sangat penting dalam proses pembelajaran matematika dikarenakan ketika siswa memiliki kemampuan pemecahan masalah yang baik maka akan mampu mentransfer kemampuan pemecahan masalahnya dalam memecahkan masalah kehidupan sehari-hari. Oleh karena itu tujuan penelitian ini adalah mendeskripsikan proses pemecahan masalah siswa berdasarkan tahapan Polya ditinjau dari kecerdasan emosional. Penelitian ini merupakan penelitian kualitatif dengan jenis deskriptif. Pemilihan subjek dilakukan secara purposive sampling dengan diikuti oleh 58 siswa di SMPN 1 Tajinan yakni 32 siswa dari kelas XI A dan 29 siswa dari XI B. Subjek dalam penelitian ini yaitu tiga siswa yang terdiri dari satu siswa kecerdasan emosional tinggi, satu siswa kecerdasan emosional sedang dan satu siswa kecerdasan emosional rendah. Data dikumpulkan melalui angket kecerdasan emosional, tes dan wawancara. Hasil penelitian diperoleh Siswa dengan kecerdasan emosional tinggi mampu dalam semua tahap pemecahan masalah yaitu memahami masalah, membuat rencana, melaksanakan rencana, melihat kembali. Subjek dengan kecerdasan emosional sedang hanya mampu dalam tahap memahami masalah dan belum memenuhi tahap membuat rencana, melaksanakan rencana, melihat kembali. Sedangkan Subjek dengan dengan kecerdasan emosional rendah tidak mampu memenuhi semua aspek yakni memahami masalah, membuat rencana, melaksanakan rencana, melihat kembal

    Analisis Pemahaman Operasi Bentuk Aljabar Siswa SMP Berdasarkan Level Kecerdasan Emosional

    Get PDF
    Penelitian ini bertujuan mendeskripsikan pemahaman operasi bentuk aljabar siswa SMP berdasarkan level kecerdasan emosional. Penelitian deskriptif dengan teknik pengambilan subjek purposive sampling dilaksanakan di SMPN 1 Malang pada 30 siswa kelas VII-H. Instrumen yang digunakan angket kecerdasan emosional dan lembar tes. Untuk mendeskripsikan secara kualitatif maka diambil tiga siswa yang diambil berdasarkan pengisian angket kecerdasan emosional, hasil pengerjaan tes serta rekomendasi guru. Pemahaman konseptual dan prosedural siswa tiap level yaitu, siswa level kecerdasan emosional tinggi memiliki pemahaman bentuk aljabar baik, siswa level kecerdasan emosional sedang memiliki pemahaman cukup baik tetapi belum mampu melakukan operasi bentuk aljabar, sedangkan siswa kecerdasan emosional rendah memiliki pemahaman kurang baik karna belum mampu menyatakan ulang konsep, serta melakukan operasi bentuk aljabar

    Kemampuan Penalaran Matematis Siswa dalam Memecahkan Masalah Matematika pada Saat Pembelajaran Daring

    Get PDF
    Penelitian ini bertujuan untuk mendeskripsikan kemampuan penalaran matematis siswa SMP dalam memecahkan masalah segiempat pada saat pembelajaran dilakukan secara daring. Penelitian diikuti oleh 20 siswa kelas IX C SMP Negeri 1 Kencong. Selanjutnya dipilih 6 sampel yang terdiri dari 6 subjek yaitu dua subjek yang mememiliki kemampuan matematis tinggi, dua subjek yang mempunyai kemampuan matematis sedang, serta dua subjek yang mempunyai kemamuan matematis rendah untuk kemudian dilakukan wawancara secara daring menggunakan aplikasi Whatssapp. Instrumen penelitian dalam penelitian ini adalah tes pemecahan masalah matematika segiempat dan pedoman wawancara. Hasil penelitian menunjukkan bahwa subjek dengan kemampuan matematika tinggi juga memiliki kemampuan penalaran matematis yang tinggi. Subjek yang memiliki kemampuan matematika sedang juga memiliki kemamuan penalaran matematis sedang. Siswa dengan kemampuan matematika rendah juga memiliki kemampuan penalaran matematis rendah. Selain itu, siswa dengan kemampuan penalaran matematis tinggi bisa memberikan lebih dari satu jawaban dalam memecahkan masalah

    Teacher interventions to induce students’ awareness in controlling their intuition

    Get PDF
    This study aimed to describe teacher interventions in students’ problem-solving. The subjects were three upper- class students at an elementary school in Indonesia who used system 2 when solving problems. This study used a qualitative case study approach. Data were obtained from students’ written answers and audio-visual recordings of teacher interventions to students. The results showed that the subjects needed teacher interventions to induce their awareness when involving system 2. Each subject needed intervention different stages. Subject 1 required intervention stage 3, subject 2 required intervention stage 2, and subject 3 only required intervention at stage 1. From the research results, it was known that the active moment of system 2 in all three subjects was the same, that is after the core problem was known. The core of the problem was ascertained after a doubtful feeling arose on the truth of the resulting answers. This feeling arose because the teacher intervened in the form of questions conducted dialogically

    PROFIL FOLDING BACK SISWA DALAM MENYELESAIKAN SOAL CERITA

    Get PDF
    The purpose of this study was to analyze and describe student folding backs in solving linear program problems based on Polya's steps. This research use desciptive qualitative approach. The subjects of this study consisted of 3 subjects, namely S1, S2, and S3 indicated that they were doing folding back. The results of this study indicate that the S1 folding back occurs. S1 is a subject who has problems when defining variables but already knows the steps to work well. Folding back is done by S1 in defining variables. Folding back is also carried out by S1 to determine the point of intersection between two lines. The intercept obtained by S1 is algebraically and geometrically different. S2 is a subject that has not been able to plan completion. Folding back is carried out by S1 in defining variables and formulating constraints. S2 writes constraints in two forms, namely equations and inequalities. Folding back is also carried out by S2 in determining the coordinates of the intersection point, drawing a graphic sketch of the inequality, determining the coordinates of the extreme points, and determining the optimum value. S3 is a subject that has been able to carry out the plan but has less accuracy. This folding back is done by S3 in writing the coordinates of a point, determining the point of intersection between two lines (because it is not careful in calculations), and when drawing inequality graphs (because it does not draw a complete graphic sketch).Keywords: folding back, proble
    corecore