977 research outputs found

    To be or not to be a black hole : detailed binary population models as a sanity check

    Get PDF
    We use the self-consistent stellar populations in the Binary Population A Spectral Synthesis (BPASS) models to assess whether NGC 1850-BH1 is a black hole. Using search criteria based on reported physical properties in the literature we purposefully search for suitable systems with a black hole (or compact object) companion: we do not find any. Good matches to the observations are found in models where the bright component is a stripped star and the companion is natively (meaning we did not impose this in our search) 1 to 2.3 magnitudes fainter than the primary in the optical bands. This alone can explain the lack of detection of the companion in the MUSE spectra without the need to invoke rapid rotation, although the conservative mass transfer exhibited by these particular models is likely to lead to rapidly rotating companions which could further smear their spectroscopic signatures. We advise that future claims of unseen black holes in binary systems would benefit from exploring detailed binary evolution models of stellar populations as a sanity check

    Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd

    Get PDF
    Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described

    The SDSS spectroscopic catalogue of white dwarf-main-sequence binaries: new identifications from DR 9–12

    Get PDF
    We present an updated version of the spectroscopic catalogue of white dwarf-main-sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS). We identify 938 WDMS binaries within the data releases (DR) 9–12 of SDSS plus 40 objects from DR 1–8 that we missed in our previous works, 646 of which are new. The total number of spectroscopic SDSS WDMS binaries increases to 3294. This is by far the largest and most homogeneous sample of compact binaries currently available. We use a decomposition/fitting routine to derive the stellar parameters of all systems identified here (white dwarf effective temperatures, surface gravities and masses, and secondary star spectral types). The analysis of the corresponding stellar parameter distributions shows that the SDSS WDMS binary population is seriously affected by selection effects. We also measure the Na I λλ 8183.27, 8194.81 absorption doublet and H α emission radial velocities (RV) from all SDSS WDMS binary spectra identified in this work. 98 objects are found to display RV variations, 62 of which are new. The RV data are sufficient enough to estimate the orbital periods of three close binaries

    A pulsating white dwarf in an eclipsing binary

    Get PDF
    White dwarfs are the burnt-out cores of Sun-like stars and are the fate of 97 per cent of the stars in our Galaxy. The internal structure and composition of white dwarfs are hidden by their high gravities, which causes all elements apart from the lightest ones to settle out of their atmospheres. The most direct method of probing the inner structure of stars and white dwarfs in detail is via asteroseismology. Here we present a pulsating white dwarf in an eclipsing binary system, enabling us to place extremely precise constraints on the mass and radius of the white dwarf from the lightcurve, independent of the pulsations. This 0.325-solar-mass white dwarf—one member of the SDSS J115219.99+024814.4 system—will serve as a powerful benchmark with which to constrain empirically the core composition of low-mass stellar remnants and to investigate the effects of close binary evolution on the internal structure of white dwarfs

    The direct detection of the irradiated brown dwarf in the white dwarf - brown dwarf binary SDSS J141126.20+200911.1

    Get PDF
    We have observed the eclipsing, post-common envelope white dwarf–brown dwarf binary, SDSS141126.20+200911.1, in the near-IR with the HAWK-I imager, and present here the first direct detection of the dark side of an irradiated brown dwarf in the H band, and a tentative detection in the Ks band. Our analysis of the light curves indicates that the brown dwarf is likely to have an effective temperature of 1300 K, which is not consistent with the effective temperature of 800 K suggested by its mass and radius. As the brown dwarf is already absorbing almost all the white dwarf emission in the Ks band, we suggest that this inconsistency may be due to the UV-irradiation from the white dwarf inducing an artificial brightening in the Ks band, similar to that seen for the similar system WD0137-349B, suggesting this brightening may be characteristic of these UV-irradiated binaries

    SDSS J105754.25+275947.5: a period-bounce eclipsing cataclysmic variable with the lowest-mass donor yet measured

    Get PDF
    We present high-speed, multicolour photometry of the faint, eclipsing cataclysmic variable (CV) SDSS J105754.25+275947.5. The light from this system is dominated by the white dwarf. Nonetheless, averaging many eclipses reveals additional features from the eclipse of the bright spot. This enables the fitting of a parameterised eclipse model to these average light curves, allowing the precise measurement of system parameters. We find a mass ratio of q = 0.0546 ±\pm 0.0020 and inclination i = 85.74 ±\pm 0.21^{\circ}. The white dwarf and donor masses were found to be Mw_{\mathrm{w}} = 0.800 ±\pm 0.015 M_{\odot} and Md_{\mathrm{d}} = 0.0436 ±\pm 0.0020 M_{\odot}, respectively. A temperature Tw_{\mathrm{w}} = 13300 ±\pm 1100 K and distance d = 367 ±\pm 26 pc of the white dwarf were estimated through fitting model atmosphere predictions to multicolour fluxes. The mass of the white dwarf in SDSS 105754.25+275947.5 is close to the average for CV white dwarfs, while the donor has the lowest mass yet measured in an eclipsing CV. A low-mass donor and an orbital period (90.44 min) significantly longer than the period minimum strongly suggest that this is a bona fide period-bounce system, although formation from a white dwarf/brown dwarf binary cannot be ruled out. Very few period-minimum/period-bounce systems with precise system parameters are currently known, and as a consequence the evolution of CVs in this regime is not yet fully understood

    Circular polarimetry of suspect wind-accreting magnetic pre-polars

    Get PDF
    We present results from a circular polarimetric survey of candidate detached magnetic white dwarf – M dwarf binaries obtained using the Nordic Optical Telescope, La Palma. We obtained phase resolved spectropolarimetry and imaging polarimetry of seven systems, five of which show clearly variable circular polarisation. The data indicate that these targets have white dwarfs with magnetic field strengths >80 MG. Our study reveals that cyclotron emission can dominate the optical luminosity at wavelengths corresponding to the cyclotron emission harmonics, even in systems where the white dwarfs are only wind-accreting. This implies that a very significant fraction of the the stellar wind of the companion star is captured by the magnetic white dwarf reducing the magnetic braking in pre-CVs. Furthermore, the polarimetric confirmation of several detached, wind-accreting magnetic systems provides observational constraints on the models of magnetic CV evolution and white dwarf magnetic field generation. We also find that the white dwarf magnetic field configuration in at least two of these systems appears to be very complex

    WD1032+011, an inflated brown dwarf in an old eclipsing binary with a white dwarf

    Get PDF
    We present the discovery of only the third brown dwarf known to eclipse a non-accreting white dwarf. Gaia parallax information and multicolour photometry confirm that the white dwarf is cool (9950 ± 150 K) and has a low mass (0.45 ± 0.05 M⊙), and spectra and light curves suggest the brown dwarf has a mass of 0.067 ± 0.006 M⊙ (70MJup) and a spectral type of L5 ± 1. The kinematics of the system show that the binary is likely to be a member of the thick disc and therefore at least 5-Gyr old. The high-cadence light curves show that the brown dwarf is inflated, making it the first brown dwarf in an eclipsing white dwarf-brown dwarf binary to be so

    Дискуссии начала 1930-х гг. в Коммунистической академии как фактор становления советской модели изучения первоначального христианства

    Get PDF
    Work on argumentation-based dialogue systems often assumes that the adoption of argumentation leads to improved dialogue efficiency and effectiveness. Several studies have taken an experimental approach to prove these alleged benefits, but none has yet supported the expressiveness of a structured argumentation logic. This paper shows how the use of argumentation in deliberation style dialogues can be tested while supporting goal-based agents that use the ASPIC framework for structured argumentation. It is experimentally shown that employing an arguing strategy increases the effectiveness over a non-argumentative strategy
    corecore