20 research outputs found

    Problems Caused by Moisture in Gas Chromatographic Analysis of Headspace SPME Samples of Short-Chain Amines

    Get PDF
    Volatile amines are usually problematic compounds in sampling, sample pretreatment and gas chromatographic analysis due to their chemical characteristics (polarity, basicity and reactivity). Headspace solid-phase microextraction (SPME) Arrow sampling of aqueous samples were proven to be complicated since moisture in the headspace was also sorbed into the SPME sorbent and resulted in distorted or split peaks for the volatile amines. This was the case especially with old used sorbents not so much with the new ones. Volume of the water sample, sampling conditions, quality of the SPME sorbent and desorption conditions greatly influenced the concentration of water in the headspace and in the sorbent phase. This, in turn, affected the length of the water film in the column which determined the degree of peak splitting and distance between the split amine peaks (water film trapped part of the amine molecules). Addition of the salt to the sample solution and additional drying of the SPME sorbent after the sampling were shown to effectively decrease the amount of water in the headspace and in the sorbent phase. This combined effect of salt addition and drying step resulted in much better peak shapes and intensities for the amines. In the best cases, the peak splitting for the volatile amines could in this way be completely avoided.Peer reviewe

    Nontargeted evaluation of the fate of steroids during wastewater treatment by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry

    Get PDF
    Emerging organic contaminants in wastewater are usually analyzed by targeted approaches, and especially estrogens have been the focus of environmental research due to their high hormonal activity. The selection of specific target compounds means, however, that most of the sample components, including transformation products and potential new contaminants, are neglected. In this study, the fate of steroidal compounds in wastewater treatment processes was evaluated by a nontargeted approach based on comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. The potential of the nontargeted approach to generate comprehensive information about sample constituents was demonstrated with use of statistical tools. Transformation pathways of the tentatively identified compounds with steroidal four-ring structure were proposed. The purification efficiency of the wastewater treatment plants was studied, and the distribution of the compounds of interest in the suspended solids, effluent water, and sludge was measured. The results showed that, owing to strong adsorption of hydrophobic compounds onto the solid matter, the steroids were mostly bound to the suspended solids of the effluent water and the sewage sludge at the end of the treatment process. The most abundant steroid class was androstanes in the aqueous phase and cholestanes in the solid phase. 17 beta-estradiol was the most abundant estrogen in the aqueous phase, but it was only detected in the influent samples indicating efficient removal during the treatment process. In the sludge samples, however, high concentrations of an oxidation product of 17 beta-estradiol, estrone, were measured.Peer reviewe

    Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions

    Get PDF
    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101–107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14–46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π–π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.M.-L.R. and J.-P.M. would like to thank the Academy of Finland Centre of Excellence program (project. no.1118615) for financial support, and L.V. thanks “Generalitat Valenciana” (Spain) for her post-doctoral grant. In addition, financial support was provided by Kempe Foundations as well as Knut and Alice Wallenberg Foundations (J.-P.M.)

    Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest : seasonal patterns, abundances and size distributions

    Get PDF
    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute similar to 30% of atmospheric aerosol particle mass in sizes > 1 mu m. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples ( 10 mu m) were collected in boreal forest (Hyytiala, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.Peer reviewe

    Soil concentrations and soil-atmosphere exchange of alkylamines in a boreal Scots pine forest

    Get PDF
    Alkylamines are important precursors in secondary aerosol formation in the boreal forest atmosphere. To better understand the behavior and sources of two alkylamines, dimethylamine (DMA) and diethylamine (DEA), we estimated the magnitudes of soil-atmosphere fluxes of DMA and DEA using a gradient-diffusion approximation based on measured concentrations in soil solution and in the canopy air space. The ambient air concentration of DMA used in this study was a sum of DMA and ethylamine. To compute the amine fluxes, we first estimated the soil air space concentration from the measured soil solution amine concentration using soil physical (temperature, soil water content) and chemical (pH) state variables. Then, we used the resistance analogy to account for gas transport mechanisms in the soil, soil boundary layer, and canopy air space. The resulting flux estimates revealed that the boreal forest soil with a typical long-term mean pH 5.3 is a possible source of DMA (170 +/- 51 nmolm(-2) day(-1)) and a sink of DEA (-1.2 +/- 1.2 nmolm(-2) day(-1)). We also investigated the potential role of fungi as a reservoir for alkylamines in boreal forest soil. We found high DMA and DEA concentrations both in fungal hyphae collected from field humus samples and in fungal pure cultures. The highest DMA and DEA concentrations were found in fungal strains belonging to decay and ectomycorrhizal fungal groups, indicating that boreal forest soil and, in particular, fungal biomass may be important reservoirs for these alkylamines.Peer reviewe

    Field measurements of biogenic volatile organic compounds in the atmosphere using solid-phase microextraction Arrow

    Get PDF
    Biogenic volatile organic compounds (BVOCs) emitted by terrestrial vegetation participate in a diversity of natural processes. These compounds impact both on short-range processes, such as on plant protection and communication, and on high-range processes, by e.g. participation on aerosol particle formation and growth. The biodiversity of plant species around the Earth, the vast assortment of emitted BVOCs, and their trace atmospheric concentrations contribute to the high remaining uncertainties about the effects of these compounds on atmospheric chemistry and physics, and call for the development of novel collection devices that can offer portability with improved selectivity and capacity. In this study, a novel solid-phase microextraction (SPME) Arrow sampling system was used for the static and dynamic collection of BVOCs from the boreal forest, and samples were subsequently analysed on-site by gas chromatography-mass spectrometry (GC-MS). This system offers higher sampling capacity and improved robustness than the traditional equilibrium-based SPME techniques, such as SPME fibers. Field measurements were performed in summer 2017 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. Complementary laboratory tests were also performed to compare the SPME-based techniques under controlled experimental conditions and to evaluate the effect of temperature and relative humidity on their extraction performance. The most abundant monoterpenes and aldehydes were successfully collected. A significant improvement on sampling capacity was observed with the new SPME Arrow system when compared to SPME fibers, with collected amounts being approximately 2 times higher for monoterpenes and 7-8 times higher for aldehydes. BVOC species exhibited different affinities for the type of sorbent materials used (PDMS/Carbon WR vs. PDMS/DVB). Higher extraction efficiencies were obtained with dynamic collection prior to equilibrium regime, but this benefit during the field measurements was small probably due to the natural agitation provided by the wind. An increase in temperature and relative humidity caused a decrease in the amounts of analytes extracted under controlled experimental conditions, even though the effect was more significant for PDMS/Carbon WR than for PDMS/DVB. Overall, results demonstrated the benefits and challenges of using SPME Arrow for the sampling of BVOCs in the atmosphere.Peer reviewe

    Chemical Characterization of Gas- and Particle-Phase Products from the Ozonolysis of alpha-Pinene in the Presence of Dimethylamine

    Get PDF
    Amines are recognized as key compounds in new particle formation (NPF) and secondary organic aerosol (SOA) formation. In addition, ozonolysis of a-pinene contributes substantially to the formation of biogenic SOAs in the atmosphere. In the present study, ozonolysis of a-pinene in the presence of dimethylamine (DMA) was investigated in a flow tube reactor. Effects of amines on SOA formation and chemical composition were examined. Enhancement of NPF and SOA formation was observed in the presence of DMA. Chemical characterization of gas and particle-phase products by high-resolution mass spectrometric techniques revealed the formation of nitrogen containing compounds. Reactions between ozonolysis reaction products of a-pinene, such as pinonaldehyde or pinonic acid, and DMA were observed. Possible reaction pathways are suggested for the formation of the reaction products. Some of the compounds identified in the laboratory study were also observed in aerosol samples (PM1) collected at the SMEAR II station (Hyytiala, Finland) suggesting that DMA might affect the ozonolysis of a-pinene in ambient conditions.Peer reviewe

    Potential of needle trap microextraction-portable gas chromatography-mass spectrometry for measurement of atmospheric volatile compounds

    Get PDF
    Volatile organic compounds (VOCs) play a key role in atmospheric chemistry and physics. They participate in photochemical reactions in the atmosphere, which have direct implications on climate through, e.g. aerosol particle formation. Forests are important sources of VOCs, and the limited resources and infrastructures often found in many remote environments call for the development of portable devices. In this research, the potential of needle trap microextraction and portable gas chromatography-mass spectrometry for the study of VOCs at forest site was evaluated. Measurements were performed in summer and autumn 2014 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiala, Finland. During the first part of the campaign (summer) the applicability of the developed method was tested for the determination of monoterpenes, pinonaldehyde, aldehydes, amines and anthropogenic compounds. The temporal variation of aerosol precursors was determined, and evaluated against temperature and aerosol number concentration data. The most abundant monoterpenes, pinonaldehyde and aldehydes were successfully measured, their relative amounts being lower during days when particle number concentration was higher. Ethylbenzene, p- and m-xylene were also found when wind direction was from cities with substantial anthropogenic activity. An accumulation of VOCs in the snow cover was observed in the autumn campaign. Results demonstrated the successful applicability of needle trap microextraction and portable gas chromatography-mass spectrometry for the rapid in situ determination of organic gaseous compounds in the atmosphere.Peer reviewe

    Integrated atomic layer deposition and chemical vapor reaction for the preparation of metal organic framework coatings for solid-phase microextraction Arrow

    Get PDF
    New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (Fe2O3) film or aluminum oxide (Al2O3) film above terephthalic acid (H2BDC) or trimesic acid (H3BTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved.Peer reviewe
    corecore