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ABSTRACT12

Amines are recognized as key compounds in new particle formation (NPF) and secondary organic13

aerosol (SOA) formation. In addition, ozonolysis of α-pinene contributes substantially to the14

formation of biogenic SOAs in the atmosphere. In the present study, ozonolysis of α-pinene in15

presence of dimethylamine (DMA) was investigated in a flow tube reactor. Effects of amines on SOA16

formation and chemical composition were examined. Enhancement of NPF and SOA formation was17

observed in presence of DMA. Chemical characterization of gas- and particle-phase products by high-18

resolution mass spectrometric techniques revealed the formation of nitrogen containing compounds.19

Reactions between ozonolysis reaction products of α-pinene, such as pinonaldehyde or pinonic acid,20

and DMA were observed. Possible reaction pathways are suggested for the formation of the reaction21

products. Some of the compounds identified in the laboratory study were also observed in aerosol22

samples (PM1) collected at the SMEAR II station (Hyytiälä, Finland) suggesting that DMA might23

affect the ozonolysis of α-pinene in ambient conditions.24
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INTRODUCTION25

Atmospheric particles are known to have a significant influence on global climate26

change, regional air quality and human health.1-3 They can be directly emitted by anthropogenic or27

natural sources (primary aerosols), such as wood burning and fossil fuel combustion. However, a28

significant fraction of atmospheric aerosol is organic in nature and often dominated by secondary29

organic aerosols (SOAs) formed from the oxidation of volatile organic compounds (VOCs).4-530

Although SOAs contribute to a major mass fraction of ambient fine particle matter (PM2.5), current31

models continue to under-predict the SOA mass observed during field measurements. In addition,32

uncertainties remain in the chemical processes governing the SOA formation and aging.33

Understanding the potential species driving SOA formation and aging is therefore critical for the34

prediction of aerosol impact on climate change and human health.35

Amines, ubiquitous in the atmosphere, are emitted into the atmosphere by a large variety36

of anthropogenic and natural sources. Globally, animal husbandry, combustion processes and37

industry are the main anthropogenic sources while oceans, vegetation and soils represent the main38

natural sources.6 Ge et al.6 have identified more than 150 atmospheric amines emitted from either39

anthropogenic or natural sources in the atmosphere. Low-molecular weight aliphatic amines, such as40

methylamine (MA), dimethylamine (DMA), trimethylamine (TMA) or ethylamine (EA), are the most41

abundant amines in the atmosphere. For instance, Kieloaho et al.7 have reported that the combined42

concentration of the major alkylamines (EA and DMA) in the boreal forest in southern Finland is43

around 150 pptv. DMA has been also detected as a major alkyl amine species in particles and cloud44

water in semi-arid and coastal regions.845

Amines are highly reactive species and they are expected to play a key role in new46

particle formation (NPF) and SOA formation.6, 9-12 For instance, they are more likely to enhance NPF47

than ammonia (NH3).9, 13-14 Therefore, understanding the transformation and fate of amines and/or48
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NH3 is currently one of the main challenges in the field of atmospheric chemistry. Other laboratory49

studies have demonstrated that amines considerably enhance nucleation of the sulfuric acid-water50

system.10, 15-16 Indeed, Almeida et al.,9 showed that a few ppt of DMA enhance the aerosols formation51

rates of sulfuric acid by several orders of magnitudes. Evidence for the participation of amines in gas52

and/or multiphase chemistry has also been demonstrated.10, 17-19 Recent studies have suggested that53

carbonyl compounds such as glyoxal,20 methylglyoxal,21 glycoaldehyde,20 acetaldehyde20 or54

pinonaldehyde22 are able to react in aerosol phase or bulk aqueous solution with small amines. The55

resulting nitrogen (N)−containing compounds could then participate in SOA growth due to their low56

vapor pressures. In addition, Stropoli and Elrod23 have reported potential multiphase reactions57

between amines and epoxides, which could further contribute to SOA formation. A previous58

experimental study has shown that the saturation vapor pressures of alkylaminium carboxylates are59

lower than those of their organic acid precursors, likely explaining that alkylamine neutralization by60

carboxylic acid enhances SOA formation.24 In addition, a recent study has also shown that alkylamine61

neutralization of carboxylic acids also enhanced the particle hygroscopicity and the cloud62

condensation nuclei (CCN) activity.25 It is worth nothing that, Mäkela et al.17 have observed that63

DMA concentrations were 30 times higher in aerosol samples collected during NPF events than those64

in non-event samples in the boreal forest at Hyytiälä Forestry Field Station in Finland. Likewise,65

Smith et al.,18 have reported that aliphatic amines contributed to 23 % of the positive ions detected66

during NPF events at the same boreal forest site, and to 47 % at an urban site in Tecamac, Mexico.67

Finally, Tao et al.12 have revealed that the heterogeneous uptake of amines is dominated by the acid-68

base reaction mechanism, which may contribute to particle growth in NPF events.69

In this context, the aim of this work was to improve our understanding of amine70

chemistry in the atmosphere and to assess their contribution to NPF and SOA growth. Since71

ozonolysis of α-pinene contributes substantially to the formation of biogenic SOAs in the atmosphere,72

its reaction was investigated in the presence of DMA in a flow tube reactor to evaluate the effect of73
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amines on SOA formation and chemical composition. Gas-phase products were characterized using74

an Aerodyne high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS)75

equipped with iodide reagent ion chemistry. Aerosol size distribution was measured with a76

differential mobility particle sizer (DMPS). In addition, gas- and particle-phase samples collected77

from flow tube experiments were analyzed by ultra-high-performance liquid chromatography coupled78

to electrospray ionization orbitrap mass spectrometry (UHPLC-HRMS). To confirm the relevance of79

the laboratory findings to the ambient atmosphere, aerosol samples (PM1) were collected from the80

SMEAR II boreal forest site at Hyytiälä, Finland, during May−June 2016 and analyzed by the same81

off-line analytical methodologies. Quantum chemistry calculations were also used for the clarification82

of enamine formation from pinonaldehyde and dimethylamine.83

EXPERIMENTAL SECTION84

Flow Tube Reactor Experiments. The ozonolysis of α-pinene in the presence or absence of DMA85

was carried out in a borosilicate glass flow tube reactor (205 cm long, 4.7 cm i.d.). The experimental86

set-up is presented in Figure S1 while the initial experimental conditions are detailed in Table 1. The87

flow tube is operated using purified dry air at atmospheric pressure and room temperature (T = 29388

± 3 K) under laminar flow conditions.26-27 The total gas flow was adjusted to 4.5 L/min resulting in a89

residence time of 53 s in the flow tube reactor. The purified air was generated by an air purification90

system (AADCO, 737 Series) that runs on compressed air and reduces concentrations of O3/NOx and91

non-methane hydrocarbons to less than 1 ppb and 5 ppb, respectively. In experiments E1-E3, 100-92

120 ppb (Table 1) of O3 was generated by an ozone generator (Dasibi 1008-PC) and injected into the93

flow tube. When the ozone concentration, determined by an ozone analyzer (Thermo Scientific model94

49), was stable, ~ 5 ppm of α-pinene was introduced into the flow tube through a mobile injector95

(Figure S1). The concentration of α-pinene was estimated from the vapor pressure28 and the measured96

gas flows. Finally, ~ 500 ppb of DMA was introduced in the flow tube (Experiments E1’-E3’) to97

investigate the impact of amines on the ozonolysis of α-pinene. DMA (Sigma-Aldrich, 40 wt. % in98
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H2O) and α-pinene (Sigma-Aldrich, 98 %) were generated by flushing nitrogen (N2) through the99

liquid compounds in glass bubblers. The DMA concentration was determined by GC-MS after solid100

phase micro extraction (SPME) using a SPME Arrow (Carbon WR, CTC Analytik).29 Details on101

DMA calibration can be found elsewhere.29 Aerosol size distributions were continuously measured102

using a differential mobility particle sizer (DMPS) in order to monitor aerosol number, surface area,103

and volume concentration. The different flows were controlled using mass flow controllers (MKS).104

All experiments were performed without an OH radical scavenger. Once aerosol volume105

concentration stabilized as well as the gas-phase oxidation products, aerosols were collected on filters106

(47 mm PTFE filters) and gaseous products on solid phase extraction (SPE) cartridges107

(divinylbenzene), for 1 hour at a flow rate of 1 L/min. SPE sampling was used to identify semi-108

volatile organic compounds in gas phase, complementary to on-line analysis by HR-ToF-CIMS.109

Filters and SPE cartridges were stored in dark in a freezer at – 18°C until extraction. It is worth noting,110

that clear memory effect was observed after switching off the injection of DMA, as it took long time111

to restore the initial O3 concentration. Hence, to ensure reproducibility, the flow tube was cleaned112

between each experiments with high purity methanol (Sigma-Aldrich, HPLC grade) and flushed with113

clean air overnight. Methanol extracts were kept after the reactions E2’ and E3’ in order to study the114

chemical composition of the products adsorbed on the walls of the flow tube.115

Chemical Characterization of Gas- and Particle-Phase Constituents. Real-time measurements of116

gas-phase oxidation products were performed with an Aerodyne high-resolution time-of-flight117

chemical ionization mass spectrometer (HR-ToF-CIMS), equipped with iodide (I−) reagent ion118

chemistry. Analyses were restricted to ions containing an iodide adduct, which guarantees detection119

of the parent organic compound without substantial fragmentation. Iodide-HR-ToF-CIMS has been120

described previously and demonstrated high sensitivity towards multifunctional oxygenated organic121

compounds in the gas and particle phases.30-32 Characterization of N−containing compounds from the122

flow tube reactor experiments was performed using a Thermo Ultimate 3000 UHPLC coupled with123
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an Orbitrap Fusion TMS (Tribrid mass spectrometer) operated in positive mode. Detailed124

characterization of analytical procedure has previously been described.22 Before extraction, an125

internal standard aliquot (caffeine, Sigma Aldrich, ReagentPlus®), controlled by gravimetry, was126

added to the samples. Filter samples were extracted in 7.5 mL of acetonitrile (HPLC grade, Sigma127

Aldrich) during 30 min of sonication at room temperature. Caffeine was used as an internal standard128

for semi-quantification of N−containing reaction products, due to the lack of commercially available129

authentic standards. Then, extracts were filtered through 0.45 µm PTFE syringe filters (Merck130

Millipore Ltd.) to remove insoluble particles. The SPE samples were extracted by slowly passing 7.5131

mL of acetonitrile through the cartridges by vacuum. Finally, the extracts were dried under a gentle132

stream of nitrogen at 30 °C and reconstituted with 100 µL of a 50/50 (v/v) mixture of acetonitrile and133

water (milli-Q water). Ten μL were injected onto the UPLC column (Phenomenex Luna Omega Polar134

C18 column, 100 × 2.1 mm, 1.6 μm) at a flow rate of 0.6 mL/min. The eluent composition was (A)135

0.1 % formic acid in Milli-Q grade water and (B) 0.1 % formic acid (HPLC grade, Sigma Aldrich) in136

acetonitrile. The mobile phase gradient was initially 95:5 (v/v, A/B), increased to 100 % B along 15137

min and returned to 95:5 (v/v, A/B) in 1 min and then kept for 4 min to equilibrate the column.138

Ambient Samples. Boreal forest samples were collected from May 3 to June 26, 2016 at the Station139

for Measuring Forest Ecosystem-Atmosphere Relations (SMEAR II) at Hyytiälä, in southern Finland140

(61°50.845′ N, 24°17.686′ E, 179 m above sea level).33 The largest nearby city is Tampere, situated141

60 km southwest from SMEAR II with around 200 000 inhabitants. The most dominant species142

emitted by the forest, mainly constituted by Scots pine and Norway spruces, are α-pinene and Δ3-143

carene.34 Ambient aerosols were collected using a high volume sampler equipped with PM1 inlet at a144

flow rate of 30 m3/h (Digitel DA-80) on quartz fiber filter (Sigma-Aldrich, Whatman®) with a145

diameter of 150 mm. Prior to sampling, quartz fiber filters were calcined at 450 °C for 6 hours to146

remove any possible organic contamination. Sampling was performed over a period of 12 hours (day147

sample, from 7 am to 7 pm and night sample, from 7 pm to 7 am). Filters were wrapped in aluminum148
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foil and placed in antistatic bags, which were stored at – 18 °C until extraction. In total 107 samples149

were collected. Filters from the field study were punched (31.25 cm2) and extracted using the protocol150

described above. Selected ion monitoring (SIM) method was applied by choosing the reaction product151

ions identified in the laboratory experiments. Tandem mass spectra (MS2) analyses were also152

performed to compare the MS2 fragmentation patterns of the product ions detected from ambient and153

laboratory samples. Field and laboratory blanks were extracted and analyzed following the same154

procedures to determine any potential contamination during the sampling, transportation, storage155

and/or analysis. The extraction efficiency for all the samples was 94 ± 16 %.156

RESULTS AND DISCUSSION157

Enhancement of NPF in the Presence of DMA. Aerosol size distributions of SOAs formed from158

the ozonolysis of α-pinene were continuously measured using a DMPS. As shown in Table 1, the159

number of particles in the experiments E1-E3 ranged from 9500 to 26000 particles per cm-3. After160

the injection of DMA (experiment E1’-E3’), all experiments revealed a subsequent increase of the161

number of particles (70 000-80 000 particles per cm3). This clearly indicates a strong influence of162

DMA on SOA formation from the ozonolysis of α-pinene. Such results are in agreement with163

observations from other laboratory studies, underlying the enhancement of NPF due to the presence164

of amines.9, 15, 35-37 A recent theoretical study has revealed that the interaction between amines and165

dicarboxylic acids likely exerts a synergetic effect on NPF due to the formation of aminium166

carboxylate ion pairs.38 As presented in Figure 1, the average median diameter of the SOAs formed167

from the ozonolysis of α-pinene was 20 ± 2 nm, while being 27 ± 2 nm in the presence of DMA. The168

increase of 7 nm could be attributed to the potential reactions between organic compounds, such as169

aldehydes, ketones or carboxylic acids with DMA.11 These reactions could lead to the formation of170

semi- and low- volatile organic compounds, which might further participate in the SOA formation.171

Therefore, to better understand the mechanisms governing the enhancement of NPF and the SOA172
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growth in the presence of DMA, chemical characterization of both gas- and particle-phase reaction173

products was performed.174

Chemical Characterization of Gaseous Reaction Products. Gaseous reaction products were175

characterized by HR-ToF-CIMS. The ions selected were detected as iodide clusters (M + 126.9050176

Da). The mass spectra of gaseous compounds identified by HR-ToF-CIMS from the ozonolysis of α-177

pinene and the α-pinene-O3-DMA reaction are presented in Figure S2. As can be seen, spectra differ178

significantly between both set of experiments. The subtracted mass spectrum from the experiments179

is shown in Figure 2, demonstrating the clear effect of DMA on the ozonolysis of α-pinene. The180

positive values correspond to the formation of reaction products after the injection of DMA and the181

negative values to the depletion of products due to the presence of DMA. As shown in Figure 2, a182

subsequent decrease of the signal of ions attributed to pinonic (m/z 311, C10H16O3I−), pinic (m/z 313183

C9H14O4I−) and hydroxy-pinonic acids (m/z 327, C10H16O4I−) were observed after the injection of184

DMA into the flow tube. This change can also be seen in Figure 3 especially for pinonic acid185

(C10H16O3I−) whose signal dropped by a factor of ~ 2.5. In addition, depletion of highly oxidized186

molecules (m/z 340−500 Da) previously identified in laboratory or field studies,39-41 was also187

observed after the injection of DMA as shown in Figure 2.188

A surprising increase of the signals of oxygenated compounds was also observed after189

the injection of DMA (Figures 2, 3 and S3). Figure S3 presents a mass defect plot of reaction products190

identified by HR-ToF-CIMS. A mass defect plot provides an effective visualization of high-resolution191

mass spectral data of a complex mixture in a two-dimensional way. More details about this approach192

can be found elsewhere.42-43 As displayed in Figure S3, a large amount of gas-phase oxygenated193

products are formed after the injection of DMA. For example, the signal of the ion at m/z 297,194

attributed to nor-pinonic acid (C9H14O3I−),  was  5  times  higher  in  the  presence  of  DMA.  The195

experiments were carried out under steady-state conditions; meaning that a constant flow of reactants,196

oxidants and particles were continuously added to the chamber. Therefore, additional formation of197
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nor-pinonic acid from OH-initiated oxidation of pinonaldehyde would require additional formation198

of OH radicals in the system. The ozonolysis of unsaturated products arising from aldehyde-199

dimethylamine reaction may lead to OH radicals which could result in the formation of nor-pinonic200

acid. It is worth noting that the products formed from the reactions of oxygenated species with DMA201

exhibit a smaller carbon skeleton than the precursors, suggesting that amine chemistry induces the202

formation of smaller oxygenated products with a larger O/C ratio. As previously reported,203

pinonaldehyde is one of the major reaction product from the oxidation of α-pinene.44 We have204

recently reported the subsequent reaction of pinonaldehyde with DMA and identified the formation205

of N−containing compounds in both gas and particulate phases. The main gaseous products observed206

was an enamine (m/z 196.1696 detected in positive mode - C12H22NO+).22 The presence of such207

compounds was observed also in this work suggesting that aldehydes can react with DMA and lead208

to a large variety of oxygenated and/or N−containing species. It is important to note that due to the209

poor sensitivity of iodide ionization towards aldehydes and/or low oxidized compounds (e.g.210

C12H21NO),30 the direct observation of reactions between aldehydes and DMA was not possible here.211

All together 45 N−containing compounds were observed in the gas phase from the α-pinene-O3-DMA212

reactions (e.g. C6H9NO3 and C3H7NO2, Figure 3) by HR-ToF-CIMS (Table S1). As discussed below,213

the oxidation of enamine or imine arising from the reactions of carbonyl and/or carboxylic acids with214

DMA,11, 45 might explain the large amount of the small oxygenated and N−containing compounds215

observed in the gas-phase.216

Previous studies have reported the reactions of amines with carboxylic acids and/or217

carbonyl compounds in either bulk solution,20-21 or aerosol phase,46 and identified the formation of218

N−containing species. In order to investigate whether enamine formation takes place in gas or aerosol219

phase, we calculated the Gibbs free energies along to the reaction coordinate using the combination220

of density functional theory and coupled cluster methods. Detailed description of the calculations is221

given in Supplementary Material (Figure S4-S7, Table S2). The reaction is suggested to begin with222
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the formation of carbinolamine followed by subsequent dehydration leading to enamine. Calculations223

resulted in so high activitation energy of carbinolamine formation that the bimolecular addition224

reaction in the atmospheric conditions is unlikely. Based on the computed Gibbs free energies the225

dehydration of carbinolamine is the rate-limiting step, and even the reaction is thermodynamically226

favourable under atmospheric conditions, the direct formation of enamine through an addition-227

elimination mechanism is kinetically restricted. In contrast, we investigated the stabilization effect of228

a single water molecule, and found that the activation energies are reduced by more than 10 kcal/mol229

for both addition and elimination steps. Therefore, we suggest that the reaction occurs on the230

molecular cluster surface. Later, enamine, formed in the aerosol phase, can evaporate to the gas phase.231

Also, facilitation of heterogeneous reactions by aerosol water has been shown elsewhere47.232

Ozone reduction from α-pinene-O3-DMA Reaction. As shown in Table 1, the ozone concentration233

dropped significantly after the addition of DMA. On average, the ozonolysis of α-pinene decreased234

the ozone concentration from 110 ppb to 42 ppb, while the presence of DMA decreased it down to 8235

ppb. The large reduction of ozone observed in these experiments cannot be solely explained by the236

reaction of DMA with O3 or OH according to the rate constants (1.67 ± 0.20 × 10-18 and 6.27 ± 0.63×237

10-11 cm3/molecule/s, respectively).48-49 Further decrease is expected due to the products formed from238

the reaction of oxygenated species with DMA that could undergo further oxidation processes with239

ozone. Indeed, carbonyl groups, such as aldehydes, can react with DMA to form enamine240

compounds.11 For instance, we have previously reported that DMA can react on the aldehyde function241

of pinonaldehyde and lead to carbinolamines, which then dehydrate to generate enamine compounds.242

In addition, formation of imines from the reaction between amines and carbonyl compounds have243

been observed.50 Hence, ozone can react with the double bond of the enamine and/or imines species244

(Figure S8), leading to a primary ozonide, which decomposes to produce a Criegee biradical245

intermediate and a carbonyl compound. Formation of carboxylic acids can also be explained by246

Criegee biradical rearrangement.51 As an example ozonolysis of C12H21NO is expected to lead to the247
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formation of nor-pinonaldehyde (C9H14O2), nor-pinonic (C9H14O3) and carbamic acids (C3H7O2N).248

A tentative reaction pathway is proposed in Figure S8, which is supported by the subsequent249

formation of nor-pinonic and carbamic acids after the injection of DMA (Figure 3). Other250

N−containing compounds, such as imines or nitroamines, may also contribute to the ozone251

consumption. Ge et al.52 have identified CH3N=CH2, (CH3)2NCHO, CH3NO2, CH3N(OH)CHO and252

CH3NHOH as major products from the ozonolysis of alkylamines. Hence, ozonolysis of these253

N−containing species might explain the large concentration of oxygenated compounds in the gas254

phase. The formation of the N−containing compounds and the increase of concentration of255

oxygenated compounds in the gas phase can explain the enhancement of NPF and SOA growth from256

the ozonolysis of α-pinene in the presence of DMA. It should be noted, however, that oligomerization257

through accretion reactions would lead to the formation of unsaturated compounds in particle phase,258

which could also participate in the ozone reduction. These observations suggest that amines may play259

an important role in the gas and heterogeneous chemistry of oxygenated species governing the SOA260

formation and aging.261

Chemical Characterization of Particulate Reaction Products. Table 2 presents the most abundant262

N−containing compounds identified from the filter or the flow tube wall extract samples. These263

compounds were not observed without DMA in either the α-pinene ozonolysis or in the laboratory264

blank samples. Differences between theoretical and measured masses obtained by HRMS are small265

and within commonly acceptable errors (i.e., ± 5 ppm). As indicated in Table 2, the major266

N−containing compounds detected in particle phases are C11H19O2N,  C10H17O3N,  C12H21O2N,267

C12H19O3N  and  C13H17O4N3. Smaller N−containing compounds from 176 to 230 Da were also268

identified in the gas phase, by either HR-ToF-CIMS or by analysis of samples collected on SPE269

cartridges, demonstrating the partitioning of these compounds between gas and particle phases. High-270

molecular weight N−containing compounds (MW > 300 Da) were also identified. The accurate mass271

measurements of the corresponding [M + H]+ ions indicate the formation of C15-C30 carbon272
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compounds, presence of such compounds supports accretion reactions occurring in particle phase.273

Reaction between oxygenated dimers and DMA, assumed from the HR-ToF-CIMS results (Figure 2,274

depletion of highly oxidized molecules m/z 340−500 Da) is also another hypothesis. It is worth275

nothing that molecules with 3 and 5 nitrogen atoms were also identified in the particle phase. They276

might take part in the formation of imidazole type compounds, previously observed from the reaction277

of glyoxal or methylglyoxal with amines in particle phase, suggesting that heterogeneous reactions278

should also be considered here.21, 50279

Interestingly, as shown in Table 2, eleven N−containing compounds exhibit an identical280

fragment ion at m/z 72.044 (C3H6ON+) in their MS2 spectra as revealed in Figure S9. Ion at m/z 72 is281

characteristic to a tertiary amide, which is likely produced from the reaction between a carboxylic282

acid and DMA. This observation suggests that carboxylic acid-amine reaction is an important reaction283

pathway leading to specific products as discussed above. Bastanti and Pankow53 have concluded that284

for all the acids studied (acetic, malic, maleic and pinic acids), amide formation was285

thermodynamically favored, supporting the hypothesis presented in this work. As for organosulfates,286

fragment ions at m/z 80 (SO3
�/−), 96 (HSO3

−) and 97 (HSO4
−) are characteristic for their detection in287

negative ion mode,54 and ion m/z 72 might be a beneficial product ion for the identification of288

compounds arising from carboxylic acid-secondary amine reaction in positive ion mode.289

A potential mechanism for the formation of products with a fragment ion at m/z 72 is tentatively290

proposed in Figure S10. As an example, pinonic acid can react with DMA to form C12H21NO2 (m/z291

212.164). Signal of pinonic acid decreased after the DMA addition, while product at m/z 212.164292

increased. In contrast, nor-pinonic acid, which is tentatively proposed to be formed from the293

ozonolysis of C12H21NO (a pinonaldehyde/DMA reaction product), might further react with DMA294

and lead to the product ion at m/z 198.149 (C11H19NO2). The MS2 spectra for the C11H19NO2 is given295

in Figure S11, and the identified fragments support the presence of an amide functional group in the296

structure. Hence, organic acids formed from the ozonolysis of α-pinene, such as terebic, nor-pinonic,297
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terpenylic, nor-pinic, pinonic, oxopinonic and hydroxyl-pinonic acids (Figure S11), previously298

observed in laboratory and field studies,55-58 can further react with DMA and lead to the formation of299

N−containing reaction products, yielding a fragment ion at m/z 72  in  their  MS2 spectra (Table 2).300

These results are in agreement with the results of the study of Lavi et al.24 in which they observed that301

alkylaminium carboxylates can enhance SOA formation. Furthermore, as it has been shown by302

Gomez-Hernandez et al.25, alkylamine neutralization of carboxylic acids also enhances the particle303

hygroscopicity.304

Reaction Products from α-pinene-O3-DMA Reaction in Ambient Aerosol. Figure 4 presents the305

extracted ion chromatograms (EICs) of parent ions at m/z 198.149 and 212.164 from α-pinene + O3306

experiment (E3), α-pinene + O3 + DMA experiment (E3’), blank filter and PM1 samples collected at307

Hyytiälä Forestry Field Station (23th of May, 2016). MS2 fragmentation patterns of parent ion at m/z308

198.149 and 212.164 from laboratory and field samples are shown in Figure S12.309

Based on the excellent agreement between the retention times, the accurate masses and310

the MS2 fragmentation pattern, parent ions at m/z 198.149 (RT 4.57 min) and 212.164 (RT 5.07 min)311

found in the boreal forest samples were attributed to N−containing compounds formed from the312

oxidation of α-pinene in the presence of DMA. Three other reaction products were also identified in313

PM1 samples at the SMEAR II Station in Hyytiälä, using accurate masses. The other reaction products314

identified in laboratory experiments samples were not observed in the boreal forest samples. Semi-315

quantification was performed using caffeine as a surrogate standard, resulting in potential large316

uncertainties for the estimated concentrations of these products, mainly due to different extraction317

yields and ionization efficiency between caffeine and the analytes. However, such approach allows318

us to provide information on variations and time-trends that cannot be obtained otherwise. The319

average concentration of compounds observed at m/z 198.149 was 0.161 ng/m3 with a maximum320

concentration of 0.990 ng/m3, while it was 0.035 ng/m3 for the parent ions at m/z 212.164 with a321

maximum concentration of 0.161 ng/m3. A temporal profile of the concentration of both compounds322
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is proposed in Figure S13. The concentration of these two compounds are fairly correlated (r2 = 0.46),323

suggesting similar source of emission or formation, except from 15th of May 2016 to 20th of May324

2016. Even if relatively low concentration of DMA has been reported for the clean boreal forest325

atmosphere,7 the identification of these two compounds in ambient samples suggests that DMA may326

have an effect on the ozonolysis of α-pinene disproportional to its concentration. However, additional327

field measurements should be performed in order to estimate the contribution of these compounds to328

aerosol particles. Because amines are ubiquitous in the atmosphere,6 similar reactions in ambient329

conditions could be important for the formation and growth of SOAs in the atmosphere. Finally, more330

laboratory studies are needed to elucidate the formation pathways and quantify the impact of amine331

reactions on the SOA formation.332

ASSOCIATED CONTENT333

Supporting Information.334
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535

536

537

Table 1. Summary of the Experimental Conditions538

Experiments
Initial

 [α-pinene]
(ppm)

Initial
[O

3
]

(ppb)

Initial
[DMA]
(ppb)

Residence
time (s)

Final
[O

3
]

(ppb)

Number of
particles
(#.cm

-3
)

E1 5.0 104.4 - 53 38.5 25800 ± 4500

E1’ 5.0 104.4 500 53 8.8 76300 ± 3100

E2 5.0 113.0 - 53 42.9 9500 ± 2000

E2’ 5.0 113.0 500 53 7.5 71300 ± 3200

E3 5.0 116.4 - 53 43.5 15500 ± 2500

E3’ 5.0 116.4 500 53 8.2 71700 ± 1500

E4 7.0 130.0 700 56 3.1 93300 ± 2500
539

540
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Table 2. N−containing compounds detected in filter and flow tube wall samples by UHPLC-HRMS in positive541

mode from α-pinene-O3-DMA experiment. Δm is the difference in ppm between theoretical masses and542

experimental masses of the ions.543

[M+H]+

detected
ions
(m/z)

molecular
formula

Δm
(ppm)

% of the total
N−containing
compounds
identified in
particulate

phasea

Tertiary
amide

functionality
MS2 fragment

C3H6ON+

(m/z 72.0444)

Detected in gas
phase Detected

in PM1
ambient
samples

HR-
CI-
APi-
TOF

SPE
cartridge
UHPLC-
HRMS

176.09171 C7H13O4N - 0.26 < 1b X X
186.11244 C9H15O3N 0.01 < 1b X X
196.13366 C11H17O2N - 0.04 < 1b X X Xf

196.16959 C12H21ON - 0.01 < 1b X Xf,g

198.14880 C11H19O2N - 0.26 7 ± 3b X X X Xe

200.12796 C10H17O3N - 0.79 6 ± 3b X X X Xf

208.10800 C10H13O2N3 -0.24 2 ± 3c

210.14890 C12H19O2N - 0.21 < 1b X X X
212.16443 C12H21O2N - 0.36 35 ± 2b X X X Xe

214.14368 C11H19O3N - 0.38 < 1b X X
216.12294 C10H17O4N - 0.45 < 1b X
226.14366 C12H19O3N - 0.65 26 ± 15b X X X
228.15930 C12H21O3N - 0.38 3 ± 1b X X X
230.13858 C11H19O4N - 0.38 < 1b X X
241.19099 C13H24O2N2 - 0.23 -d

244.15422 C12H21O4N - 0.46 < 1b

266.11325 C12H15O4N3 1.07 < 1c

280.12920 C13H17O4N3 - 0.42 15 ± 14c

300.15506 C13H21O5N3 1.13 < 1c

308.16010 C15H21O4N3 1.20 < 1b

334.22200 C16H31O6N - 0.54 -d

342.22729 C18H31O5N - 0.54 < 1b

358.25861 C19H35O5N - 0.62 -d

364.16119 C16H21O5N5 0.98 < 1b

364.26923 C18H37O6N - 0.54 -d

376.19638 C17H29O8N - 0.48 -d

384.17606 C17H25O7N3 1.22 < 1c

388.19678 C18H29O8N - 0.62 -d

390.28491 C20H39O6N - 0.34 -d

394.31610 C20H43O6N - 0.61 -d

401.13489 C20H20O7N2 -1.01 < 1b

411.17007 C26H22O3N2 0.61 < 1b

442.21826 C20H31O8N3 0.3 < 1b

444.33182 C24H45O6N - 0.11 -d

488.35812 C26H45O6N 0.15 -d

504.20868 C23H29O8N5 0.42 < 1c

532.38452 C28H53O8N - 0.09 -d

576.41060 C30H57O9N - 0.01 -d

aPeak area (ioni)/ΣPeak area (ions)544
bdetected in aerosol samples and in the flow tube wall samples545
conly detected in aerosol samples546
donly detected in the flow tube wall samples547
econfirmed by retention times, accurate masses and MS-MS fragmentation patterns548
fconfirmed by accurate masses549
gpreviously observed in ambient samples22550
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551

Figure 1. Particle number concentration (left) and particle size distribution (right) from α-pinene-O3552

experiment (E1) and α-pinene-O3-DMA experiment (E1’). The blue curves represent 3 different times of the553

particle size distribution from α-pinene-O3-DMA experiment.554

555
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562

Figure 2. Difference in Mass Spectra from α-pinene-O3-DMA (experiment E2’) and α-pinene-O3563

experiments (experiment E2). Positive signals correspond to new products formed in the presence of DMA564

and negative signals are compounds lost when DMA is introduced.565
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569

570

571

572

Figure 3. Temporal profiles of selected ion HR-ToF-CIMS (Experiments E2 and E2’), DMA was injected at573

11:45. C9H14O4I ion is attributed to nor-pinonic acid signal, C10H16O3I to pinonic acid signal, and C9H14O2I to574

nor-pinonaldehyde signal.575

576
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586

Figure 4. Extracted ion chromatograms of m/z 198.1489 ± 0.0015 and 212.1644 ± 0.0015 from (A) α-pinene587

+ O3 experiment, (B) α-pinene + O3 + DMA experiment, (C) blank filter sample, and (D) PM1 sample collected588

in Hyytiälä (23th of May, 2016).589

590

591

592

593

594

595

596

597

598

599

600

601

602

[198.147-198-150][212.150-212.180]
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