51 research outputs found
Semidefinite Approximations of the Matrix Logarithm
© 2018, SFoCM. The matrix logarithm, when applied to Hermitian positive definite matrices, is concave with respect to the positive semidefinite order. This operator concavity property leads to numerous concavity and convexity results for other matrix functions, many of which are of importance in quantum information theory. In this paper we show how to approximate the matrix logarithm with functions that preserve operator concavity and can be described using the feasible regions of semidefinite optimization problems of fairly small size. Such approximations allow us to use off-the-shelf semidefinite optimization solvers for convex optimization problems involving the matrix logarithm and related functions, such as the quantum relative entropy. The basic ingredients of our approach apply, beyond the matrix logarithm, to functions that are operator concave and operator monotone. As such, we introduce strategies for constructing semidefinite approximations that we expect will be useful, more generally, for studying the approximation power of functions with small semidefinite representations
Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization
The purpose of this note is to survey a methodology to solve systems of
polynomial equations and inequalities. The techniques we discuss use the
algebra of multivariate polynomials with coefficients over a field to create
large-scale linear algebra or semidefinite programming relaxations of many
kinds of feasibility or optimization questions. We are particularly interested
in problems arising in combinatorial optimization.Comment: 28 pages, survey pape
Finding polynomial loop invariants for probabilistic programs
Quantitative loop invariants are an essential element in the verification of
probabilistic programs. Recently, multivariate Lagrange interpolation has been
applied to synthesizing polynomial invariants. In this paper, we propose an
alternative approach. First, we fix a polynomial template as a candidate of a
loop invariant. Using Stengle's Positivstellensatz and a transformation to a
sum-of-squares problem, we find sufficient conditions on the coefficients.
Then, we solve a semidefinite programming feasibility problem to synthesize the
loop invariants. If the semidefinite program is unfeasible, we backtrack after
increasing the degree of the template. Our approach is semi-complete in the
sense that it will always lead us to a feasible solution if one exists and
numerical errors are small. Experimental results show the efficiency of our
approach.Comment: accompanies an ATVA 2017 submissio
Sharper and Simpler Nonlinear Interpolants for Program Verification
Interpolation of jointly infeasible predicates plays important roles in
various program verification techniques such as invariant synthesis and CEGAR.
Intrigued by the recent result by Dai et al.\ that combines real algebraic
geometry and SDP optimization in synthesis of polynomial interpolants, the
current paper contributes its enhancement that yields sharper and simpler
interpolants. The enhancement is made possible by: theoretical observations in
real algebraic geometry; and our continued fraction-based algorithm that rounds
off (potentially erroneous) numerical solutions of SDP solvers. Experiment
results support our tool's effectiveness; we also demonstrate the benefit of
sharp and simple interpolants in program verification examples
SAT Modulo Linear Arithmetic for Solving Polynomial
Polynomial constraint solving plays a prominent role in several areas of
hardware and software analysis and verification, e.g., termination proving, program
invariant generation and hybrid system verification, to name a few. In this paper we
propose a new method for solving non-linear constraints based on encoding the problem
into an SMT problem considering only linear arithmetic. Unlike other existing methods,
our method focuses on proving satisfiability of the constraints rather than on proving
unsatisfiability, which is more relevant in several applications as we illustrate with
several examples. Nevertheless, we also present new techniques based on the analysis
of unsatisfiable cores that allow one to efficiently prove unsatisfiability too for a broad
class of problems. The power of our approach is demonstrated by means of extensive
experiments comparing our prototype with state-of-the-art tools on benchmarks taken
both from the academic and the industrial world
Bounding Mean First Passage Times in Population Continuous-Time Markov Chains
We consider the problem of bounding mean first passage times and reachability probabilities for the class of population continuous-time Markov chains, which capture stochastic interactions between groups of identical agents. The quantitative analysis of such models is notoriously difficult since typically neither state-based numerical approaches nor methods based on stochastic sampling give efficient and accurate results. Here, we propose a novel approach that leverages techniques from martingale theory and stochastic processes to generate constraints on the statistical moments of first passage time distributions. These constraints induce a semi-definite program that can be used to compute exact bounds on reachability probabilities and mean first passage times without numerically solving the transient probability distribution of the process or sampling from it. We showcase the method on some test examples and tailor it to models exhibiting multimodality, a class of particularly challenging scenarios from biology
Recommended from our members
Semidefinite Approximations of the Matrix Logarithm
© 2018, SFoCM. The matrix logarithm, when applied to Hermitian positive definite matrices, is concave with respect to the positive semidefinite order. This operator concavity property leads to numerous concavity and convexity results for other matrix functions, many of which are of importance in quantum information theory. In this paper we show how to approximate the matrix logarithm with functions that preserve operator concavity and can be described using the feasible regions of semidefinite optimization problems of fairly small size. Such approximations allow us to use off-the-shelf semidefinite optimization solvers for convex optimization problems involving the matrix logarithm and related functions, such as the quantum relative entropy. The basic ingredients of our approach apply, beyond the matrix logarithm, to functions that are operator concave and operator monotone. As such, we introduce strategies for constructing semidefinite approximations that we expect will be useful, more generally, for studying the approximation power of functions with small semidefinite representations
- …