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Abstract This article presents an arithmetic for the computation of Chebyshev models for
factorable functions and an analysis of their convergence properties. Similar to Taylor mod-
els, Chebyshev models consist of a pair of a multivariate polynomial approximating the
factorable function and an interval remainder term bounding the actual gap with this poly-
nomial approximant. Propagation rules and local convergence bounds are established for
the addition, multiplication and composition operations with Chebyshev models. The global
convergence of this arithmetic as the polynomial expansion order increases is also discussed.
A generic implementation of Chebyshev model arithmetic is available in the library MC++.
It is shown through several numerical case studies that Chebyshev models provide tighter
bounds than their Taylor model counterparts, but this comes at the price of extra computa-
tional burden.

Keywords Global optimization · Factorable functions ·Chebyshev models · Taylor models ·
Interval analysis · Convergence rate

1 Introduction

Many complete search methods for problems in global optimization and constraint satisfac-
tion hinge on the ability to compute enclosures for the range of nonconvex functions as well
as sets defined by multiple equalities and/or inequalities [44]. A variety of parameterizations
can be used to describe or approximate compact sets, including convex sets such as intervals,
ellipsoids and polytopes as well as nonconvex sets for instance in the form of the image of
a multivariate polynomial. Chachuat et al. [13] have argued that the foregoing parameter-
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izations and many others can be cast as affine set-parameterizations with either convex or
nonconvex basis sets. In particular, a number of arithmetics have been developed over the
years that enable propagation of certain affine-set parameterizations through the atom oper-
ations of factorable functions in order to determine rigorous enclosures of their image sets.
This includes interval arithmetic [40,41], ellipsoidal calculus [28,61], polyhedral relaxations
[54,55], and Taylormodel arithmetic [11,36], to name but a few.Other established techniques
to relax sets or programs defined by nonconvex factorable functions involve constructing a
pair of convex/concave bounds for each function, such as McCormick relaxations [38,39]
and αBB/γBB relaxations [1,3,23]. In the case of semialgebraic problems, hierarchies of
linear matrix inequality (LMI) relaxations can also be constructed based on a semidefinite
programming formulation of the sum of squares decomposition for multivariate polynomials
[29,46].

The focus in this paper is on polynomial models of multivariable functions, namely enclo-
sures in the form of a polynomial approximant of given order and an interval remainder
bound on the approximation error. Taylor models (or Taylor forms) are a special case of
polynomial models, whereby the polynomial approximation matches the multivariate Taylor
expansion of the function at a given point in the variable domain [43]. The idea of such
interval polynomial enclosures dates back to Moore [40], and methods for computing the
remainder bounds concurrently with the polynomial were later developed in the early 1980s
[17,51] and popularized from the mid 1990s by Berz et al. [7,35,36]. Similar in essence to
interval arithmetic, a well-developed Taylor model arithmetic is available [8,34], encompass-
ing rules for binary sums, binary products and outer-compositions with a library of univariate
functions such as exp(·), log(·) and √·. For sufficiently smooth functions, the diameter of
the remainder interval constructed with (qth-order) Taylor model arithmetic can be proved
to be a high-order power (q + 1) of the diameter of the variables domain [11]. This gives
Taylor models a clear advantage over traditional interval extensions or centered forms for
sufficiently narrow domains, but conversely it may result in a large overestimation or may
even be poorer than naive interval evaluation overwider domains. Nevertheless, this approach
has proved successful in computing tight enclosures for the solutions of differential equa-
tions and implicit algebraic equations [24,33,42,49,50,53,60], and it has enabled complete
search for a range of global optimization or constraint satisfaction problems that could not
be tackled using interval techniques alone (see, e.g., [4,9,31,32,47,52]). Such higher-order
inclusion techniques are indeed appealing in complete search applications based on branching
or subdivision, where they can mitigate the clustering effect [15,62].

A rather natural idea involves replacing the Taylor series approximation with a better one,
ideally the minimax polynomial approximation, or near-minimax approximations such as
Chebyshev series. The development of affine arithmetics [19] yielding first-order approxi-
mations can be seen as a precursor of this approach. Regarding univariate functions, improved
variants based on the Chebyshev polynomials, Bernstein polynomials and others were widely
used during the early 1980s under the name of ultra-arithmetic [26]. A comparison of uni-
variate Taylor forms and Chebyshev forms in [27] showed that expansions in Chebyshev
series may be orders of magnitude more accurate than expansions in Taylor series. The use
of Chebyshev series expansion as an arithmetic is also the philosophy behind the package
Chebfun by Trefethen et al. [6,57], which has recently been extended to functions in two
variables as well [56]. It should be noted that Chebfun relies on computations with func-
tions to 15-digit accuracy, thus removing the need for propagating a remainder term, but
the results are not validated per se. In contrast, Brisebarre and Joldeş [12,25] developed
an arithmetic for univariate functions based on Chebyshev interpolation polynomials and a
remainder term. More recently, Dzetkulič [16] extended the previous work to enable enclo-
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sure of multivariate functions using truncated Chebyshev series and an interval remainder
term, namely Chebyshev models. This latter work makes use of Chebyshev models as a
means of propagating bounds for differential equations, but does not study the convergence
properties of this arithmetic.

Building upon these existing contributions, this article presents a Chebyshev model arith-
metic in order to compute enclosures for an inclusive class of factorable functions (Sect. 3).
Besides formalizing the rules of addition, multiplication and composition as well as the
polynomial range bounders, we describe an improvement of the remainder term in compo-
sition operations with certain univariate functions. We also present a convergence analysis
of Chebyshev models, which investigates the propagation of local convergence properties
through the addition, multiplication and composition operations (Sect. 4), and we discuss the
global convergence of this arithmetic as the polynomial expansion order increases. Finally,we
present numerical case studies illustrating the convergence properties of Chebyshev models
and comparing their tightness and computational performance with Taylor models (Sect. 5).
The underlying implementation of Chebyshev model arithmetic is part of the library MC++,
which is made freely available at: http://omega-icl.bitbucket.org/mcpp/.

2 Notation and background

The set of n-dimensional interval vectors is denoted by IR
n . The midpoint and radius of

an interval vector X := [xL, xU] ∈ IR
n are defined as mid X := 1

2 (x
L + xU) ∈ R

n and
rad X := 1

2 (x
U − xL) ∈ R

n , respectively. The image of the set X ∈ IR
n under a continuous

function f : Rn → R is given by

f̄ (X) := { f (x)|x ∈ X} ∈ IR.

The total variation of a (possibly discontinuous) function g : R → R on the interval
Y := [yL, yU] ∈ IR is the quantity

V [g]Y := sup

{
N∑
i=1

|g(ξi ) − g(ξi−1)|
∣∣∣∣∣ N > 0, yL = ξ0 < ξ1 < · · · < ξN = yU

}
,

where ξ0, . . . , ξN is any finite partition of Y , and the supremum norm of g on Y is given by

‖g‖Y := sup {|g(ξ)||ξ ∈ Y }
Moreover, by a slight abuse of the notation, we use V [g] and ‖g‖ when Y = [−1, 1].

Chebyshev polynomials of the first kind, denoted by Tk , are defined by the three-term
recurrence relation

T0(x) := 1, T1(x) := x, Tk+1(x) := 2xTk(x) − Tk−1(x).

An explicit expression of these polynomials on [−1, 1] is
Tk(x) = cos(k arccos(x)).

The Chebyshev polynomials are extremal polynomials with respect to the property that, for
each k > 0, Tk(x) is the polynomial with the largest possible leading coefficient subject to
the condition that its range is in [−1, 1] for x ∈ [−1, 1].
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Any polynomial function Pq of degree q can be written in terms of the Chebyshev poly-
nomials as [37]

Pq(x) =
q∑

k=0

akTk(x).

An efficient way of evaluating such a linear combination of Chebyshev polynomials is using
the Clenshaw algorithm [14],

Pq(x) = a0 + xb1(x) − b2(x),

where the bk’s are obtained using the (reverse) recurrence formula

bk(x) = ak + 2xbk+1(x) − bk+2(x) with bq+1(x) = bq+2(x) = 0. (1)

Moreover, the product between two Chebyshev polynomials expands to

Tj (x)Tk(x) = 1

2

(
Tj+k(x) + T| j−k|(x)

)
. (2)

The Chebyshev polynomials form a sequence of orthogonal polynomials with respect to
the weight 1√

1−x2
on [−1, 1],

∫ 1

−1

Tj (x)Tk(x)√
1 − x2

dx =
⎧⎨
⎩

π if j = k = 0
π/2 if j = k > 0
0 otherwise.

Any Lipschitz continuous function f on [−1, 1] has a unique representation as an absolutely
and uniformly convergent series [58],

f (x) =
∞∑′

k=0

akTk(x) with

ak := 2

π

∫ 1

−1

Tk(x) f (x)√
1 − x2

dx = 2

π

∫ π

0
f (cos(θ)) cos(kθ)dθ, (3)

where the notation
∑′ indicates that the first term is halved. In general, the Chebyshev

coefficients ak can be approximated using a numerical quadrature, possibly in combination
with the fast Fourier cosine transform to improve the computation speed [21].

For practical purposes, a qth-order polynomial approximant Pq
f for f can be obtained

from the partial sums of (3) as

Pq
f (x) :=

q∑′

k=0

akTk(x). (4)

The smoother the function f on [−1, 1], the faster the convergence of its approximants Pq
f

as q → ∞. The following bounds are available with regards to the accuracy of the partial
sum Pq

f , depending on the regularity of f :

– If f and its derivatives through f (s−1) for a given s ≥ 0 are absolutely continuous on
[−1, 1] and if f (s) has finite total variation, V [ f (s)] < ∞, then [58]

∀q ≥ s + 1,
∥∥∥ f − Pq

f

∥∥∥ ≤ 2

π

V [ f (s)]
s(q − s)s

. (5)
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– If f and its derivatives through f (q) are continuously differentiable on [−1, 1], then [18]
∥∥∥ f − Pq

f

∥∥∥ ≤ ‖ f (q+1)‖
2q(q + 1)! . (6)

An alternative approach to obtaining a qth-order polynomial approximant is by construct-
ing the polynomial interpolant P̂q

f at Chebyshev points,

P̂q
f (x) :=

q∑′

k=0

âkTk(x)

with âk := 2

q + 1

q∑
j=0

f (cos(θ j ))Tk(cos(θ j )) = 2

q + 1

q∑
j=0

f (cos(θ j )) cos(k θ j )

and θ j := π

2

j + 1

q + 1
. (7)

The polynomial P̂q
f yields a near-minimax approximation, and counterparts to the error

estimates in (5) and (6) are, respectively, [18,58]

∀q ≥ s + 1,
∥∥∥ f − P̂q

f

∥∥∥ ≤ 4

π

V [ f (s)]
s(q − s)s

, (8)

∥∥∥ f − P̂q
f

∥∥∥ ≤ ‖ f (q+1)‖
2q(q + 1)! . (9)

While the truncated Chebyshev series expansion Pq
f is generally a better approximation than

the Chebyshev interpolation polynomial P̂q
f , the latter comes with the inherent advantage

that the coefficients âk in (7) can be obtained from a few function evaluations only.
The (over-)approximation of multivariate functions using Chebyshev polynomials is at

the heart of the present paper. Like in the univariate case, any qth-order polynomial function
in n variables can be written in terms of the Chebyshev polynomials as

Pq(x) =
∑
|κ|≤q

aκTκ (x),

where κ ∈ N
n is a multi-index; the order of κ is given by |κ| := ∑n

i=1 κi ; and Tκ (x) is a
shorthand notation for the expression

∏n
i=1 Tκi (xi ) for any x ∈ R

n .

3 Chebyshev model arithmetic

Similar to Taylor models [11,43], Chebyshev models are estimators made by the sum of a
multivariate polynomial in Chebyshev form and a remainder interval providing a bound on
the approximation error. A formal definition follows:

Definition 1 Let the function f : Z → R be defined on Z ⊆ R
n . For every interval

vector Y ⊂ Z , let the multivariate polynomial Pq
f,Y : [−1, 1]n → R with Pq

f,Y (ξ) :=∑
|κ|≤q aκTκ (ξ) and the symmetric interval Rq

f,Y ∈ IR be such that

∀ξ ∈ [−1, 1]n, f (mid Y + ξ ◦ rad Y ) − Pq
f,Y (ξ) ∈ Rq

f,Y , (10)
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where ◦ denotes the entrywise (or Hadamard) product. We call the pair (Pq
f,Y , Rq

f,Y ) a qth-

order Chebyshev model of f on Y , and (Pq
f,Y , Rq

f,Y )Y⊂Z a scheme of qth-order Chebyshev
models for f in Z .

Notice that, in the sense of Definition 1, the polynomial part Pq
f,Y of a Chebyshev model

may be different from the actual truncated Chebyshev expansion of f . Notice also the need
for scaling the variables in [−1, 1] for consistency with the definition and properties of
Chebyshev polynomials of the first kind. The definition of schemes of Chebyshev models is
in analogy with the scheme of estimators introduced by Bompadre et al. [10,11] to support
convergence analysis.

Similar in essence to interval (or Taylor model) arithmetic, our focus in the following
subsections is on the development of an arithmetic that enables the construction of Chebyshev
models for factorable functions, namely functionswhich can be represented by afinite number
of binary sums, binary products and outer compositions with a univariate function. As well
as the specification of these three “elementary” operations, developing such an arithmetic
also calls for an initialization procedure for variables and constants, and the ability to bound
the range of Chebyshev models.

3.1 Initialization

Given a set Z ⊆ R
n , each variable zi ∈ Zi with i ∈ {1, . . . , n} can be represented by a

scheme of qth-order Chebyshev models (Pq
zi ,Y

, Rq
zi ,Y

)Y⊂Z with

∀ξ ∈ [−1, 1]n, Pq
zi ,Y

(ξ) :=
{
mid Yi T0(ξi ) if q = 0
mid Yi T0(ξi ) + rad Yi T1(ξi ) if q > 0

(11)

Rq
zi ,Y

:=
{
Yi − mid Yi if q = 0
[0, 0] if q > 0.

(12)

Likewise, any real constant r ∈ R is trivially represented by the scheme of Chebyshevmodels
(r T0, [0, 0])Y⊂Z .

3.2 Binary sum operations

Consider two functions f1, f2 : Z ⊆ R
n → R, and suppose that (Pq

f1,Y
, Rq

f1,Y
)Y⊂Z and

(Pq
f2,Y

, Rq
f2,Y

)Y⊂Z are corresponding schemes of Chebyshev models. Then, a scheme of

Chebyshev models (Pq
f1± f2,Y

, Rq
f1± f2,Y

)Y⊂Z for f1 ± f2 in Z is simply obtained by addi-
tion/subtraction of the polynomial parts and of the remainder parts,

∀ξ ∈ [−1, 1]n, Pq
f1± f2,Y

(ξ) := Pq
f1,Y

(ξ) ± Pq
f2,Y

(ξ) (13)

Rq
f1± f2,Y

:= Rq
f1,Y

± Rq
f2,Y

. (14)

3.3 Binary product operations

Consider again two functions f1, f2 : Z ⊆ R
n → R, and suppose that (Pq

f1,Y
, Rq

f1,Y
)Y⊂Z

and (Pq
f2,Y

, Rq
f2,Y

)Y⊂Z are corresponding schemes of Chebyshev models, with

Pq
f1,Y

(ξ) :=
∑
|κ|≤q

aqY,κTκ (ξ) and Pq
f2,Y

(ξ) :=
∑
|κ|≤q

bqY,κTκ (ξ).
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In order to arrive at a valid scheme of qth-order Chebyshev models (Pq
f1 f2,Y

, Rq
f1 f2,Y

)Y⊂Z

for the product function f1 f2 in Z , we start by expressing the product between the respective
polynomial parts,

Pq
f1,Y

(ξ)Pq
f2,Y

(ξ) =
∑
|λ|≤q

∑
|μ|≤q

aqY,λb
q
Y,μ Tλ(ξ) Tμ(ξ).

A complication with polynomial multiplication in Chebyshev basis is that, according to the
property (2), each product term Tλ(ξ)Tμ(ξ) generates 2N (λ,μ) terms with

N (λ, μ) := card{i ∈ {1, . . . , n} | λiμi > 0} ≤ n.

See also Sect. 5 for further discussions and related implementation considerations.
Introducing the map Pq : Nn → N

n × N
n given by

Pq(κ) :=
{
(λ, μ) ∈ N

2n
∣∣∣∀i ∈ {1, . . . , n}, λi + μi = κi ∨ |λi − μi | = κi
|λ| ≤ q, |μ| ≤ q

}
, (15)

it follows from (2) that

Pq
f1,Y

(ξ)Pq
f2,Y

(ξ) =
∑

|κ|≤2q

cqY,κTκ (ξ) with cqY,κ :=
∑

(λ,μ)∈Pq (κ)

aqY,λb
q
Y,μ

2N (λ,μ)
. (16)

Observe that the resulting product polynomial is of order 2q and that the index sets Pq(κ)

are non-empty for |κ| ≤ 2q . A simple way of defining the polynomial part Pq
f1 f2,Y

in the
resulting Chebyshev model is therefore by retaining all the terms of order no larger than q as

∀ξ ∈ [−1, 1]n, Pq
f1 f2,Y

(ξ) :=
∑
|κ|≤q

cqY,κTκ (ξ). (17)

Then, the corresponding remainder term Rq
f1 f2,Y

can be obtained by assembling four terms,
namely the multiplication of the two remainders, the multiplication of each remainder with
a bound on the other polynomial range, and a bound on all the terms of order larger than q
from the product of the two polynomials,

Rq
f1 f2,Y

:= Rq
f1,Y

Rq
f2,Y

+ Rq
f1,Y

[
Pq

f2,Y

]
+
[
Pq

f1,Y

]
Rq

f2,Y

+
∑

q<|κ|≤2q

∣∣∣cqY,κ

∣∣∣ [−1, 1]. (18)

The latter hinges on the ability to compute bounds on the polynomial parts of the Chebyshev
model operands, denoted by [Pq

f1,Y
] ⊇ {Pq

f1,Y
(ξ) | ξ ∈ [−1, 1]n} and [Pq

f2,Y
] ⊇ {Pq

f2,Y
(ξ) |

ξ ∈ [−1, 1]n} here. Such range bounders for Chebyshev models are discussed later on in
Sect. 3.5.

An important aspect about polynomial multiplication in Chebyshev basis is that the com-
puted qth-order polynomial Pq

f1 f2,Y
in (17) will not correspond to the qth-order Chebyshev

expansion of f1 f2 in general, even when Pq
f1,Y

and Pq
f2,Y

are themselves qth-order Cheby-
shev expansion of f1 and f2, respectively. The reason behind this discrepancy is that the
Chebyshev coefficients in the qth-order expansion of f1 f2 depend on terms of order greater
than q in the Chebyshev expansions of f1 and f2, which are missing here because of the
truncation. Dzetkulič [16] argue that the resulting Chebyshev models nevertheless provide a
tighter approximation than by multiplying Pq

f1,Y
and Pq

f2,Y
in monomial basis.
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3.4 Univariate outer-composition operations

Consider the functions f : Z ⊆ R
n → R and F : X ⊆ R → R. Suppose that

(Pq
f,Y , Rq

f,Y )Y⊂Z is a scheme of qth-order Chebyshev models for f , such that Bq
Y :=

[Pq
f,Y ] + Rq

f,Y ⊆ X for all Y ⊆ Z . Let the scaling function Φ
q
Y : Y → [−1, 1] be given by

Φ
q
Y (y) := f (y) − mid Bq

Y

rad Bq
Y

(:= 0 if rad Bq
Y = 0

)
,

and denote by (Pq
Φ,Y , Rq

Φ,Y )Y⊂Z the corresponding scheme of Chebyshev models for Φ
q
Y ,

(
Pq

Φ,Y , Rq
Φ,Y

)
= (Pq

f,Y , Rq
f,Y ) − mid Bq

Y

rad Bq
Y

(=(0, [0, 0]) if rad Bq
Y = 0

)
, (19)

with Pq
Φ,Y (0) = 0. Suppose also that a scheme (Pq

F,W , Rq
F,W )W⊂X of Chebyshev models

for F is available, with

∀ζ ∈ [−1, 1], Pq
F,W (ζ ) :=

q∑
k=0

ϕ
q
W,k Tk(ζ ).

We will discuss the computation of such a scheme at the end of this subsection.
In order to construct a valid schemeofqth-orderChebyshevmodels (Pq

F◦ f,Y , Rq
F◦ f,Y )Y⊂Z

for the composite function F ◦ f in Z , we start by applying the Clenshaw recurrence formula
(1) in order to determine a scheme (Pq

PF◦Φ,Y , Rq
PF◦Φ,Y )Y⊂Z of Chebyshev models for the

(parameterized) composite function Pq
F,Bq

Y
◦ Φ

q
Y ,

(Pq
PF◦Φ,Y , Rq

PF◦Φ,Y ) := ϕ
q
Bq
Y ,0

+
(
Pq

Φ,Y , Rq
Φ,Y

) (
Pq

β1,Y
, Rq

β1,Y

)
−
(
Pq

β2,Y
, Rq

β2,Y

)
(20)

with:
(
Pq

βk ,Y
, Rq

βk ,Y

)
= ϕ

q
Bq
Y ,k

+ 2
(
Pq

Φ,Y , Rq
Φ,Y

) (
Pq

βk+1,Y
, Rq

βk+1,Y

)
−
(
Pq

βk+2,Y
, Rq

βk+2,Y

)
, k = 0, . . . , q (21)(

Pq
βq+1,Y

, Rq
βq+1,Y

)
=
(
Pq

βq+2,Y
, Rq

βq+2,Y

)
= (0, [0, 0]). (22)

Observe that this recurrence consists of binary sum and product operations only, for which
rules have already been established in Sects. 3.2 and 3.3. Observe also that when rad Bq

Y = 0,
which occurs if either f is constant on Y or rad Y = 0, we have

(
Pq
PF◦Φ,Y , Rq

PF◦Φ,Y

)
:=
(

ϕ
q
Bq
Y ,0

, [0, 0]
)

.

Finally, the polynomial and remainder parts of the desired Chebyshev models (Pq
F◦ f,Y ,

Rq
F◦ f,Y )Y⊂Z are given by

∀ξ ∈ [−1, 1]n, Pq
F◦ f,Y (ξ) := Pq

PF◦Φ,Y (ξ) (23)

Rq
F◦ f,Y := Rq

PF◦Φ,Y + Rq
F,Bq

Y
. (24)
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In order to use this approach, one needs the ability to construct Chebyshev models
(Pq

F,W , Rq
F,W ) corresponding to a given library of univariate functions, such as F(x) =

exp(x), log(x),
√
x , 1

x , sin(x), |x |, etc.
– A systematic way of doing this is by computing a truncated Chebyshev expansion of F

of order q as

Pq
F,W (ξ) =

q∑′

k=0

2

π

(∫ 1

−1

Tk(ζ )F (mid W + ζ rad W )√
1 − ζ 2

dζ

)
Tk(ξ). (25)

Then, if F is q + 1-times continuously differentiable on W , the truncation error can be
bounded as

Rq
F,W =

∥∥F (q+1)
∥∥
W (rad W )q+1

2q(q + 1)! [−1, 1]. (26)

Otherwise, if F and its derivatives through F (s−1) are absolutely continuous on W and
F (s) has finite total variation V [F (s)]W < ∞with s < q , a bound on the truncation error
is given by

Rq
F,W = 2

π

V
[
F (s)

]
W (rad W )s

s(q − s)s
[−1, 1]. (27)

– Alternatively, a Chebyshev interpolating polynomial of order q may be computed as

Pq
F,W (ξ) =

q∑′

k=0

2

q + 1

⎛
⎝ q∑

j=0

F
(
mid W + ζ j rad W

)
Tk(ζ j )

⎞
⎠ Tk(ξ). (28)

The error bound Rq
F,W in (26) remains valid for any q + 1-times continuously differen-

tiable function F on W . Otherwise, the following bound may be used instead of (27) if
F and its derivatives through F (s−1) are absolutely continuous on W and F (s) has finite
total variation V [F (s)]W < ∞ with s < q ,

Rq
F,W = 4

π

V
[
F (s)

]
W (rad W )s

s(q − s)s
[−1, 1]. (29)

In comparison with their Taylor expansion counterparts for sufficiently smooth functions, we
note that the width of the remainder is smaller by a factor of 2q . Moreover, the Chebyshev
approach remains applicable for continuous, yet nonsmooth, functions. For instance, since
the total variation of the derivative of |x | on the interval [−ρ, ρ] is finite, equal to 2, a
bound for the interpolation error based on (29) is Rq

|·|,[−ρ,ρ] = [− 8ρ
π(q−1) ,

8ρ
π(q−1) ], for any

q > 1.
In practice, the bounds Rq

F,W on the truncation error may be tightened further if F meets
certain regularity and monotonicity conditions. Under these extra conditions, it can be estab-
lished that themaximumabsolute error between F and its polynomial approximantPq

F,W—as
given by (25) or (28)—always occurs at one of the endpoints ofW . This result is formalized
in the following lemma:

Lemma 1 Let the function F have an analytic extension on the closed unit disk in the complex
plane and have all its successive derivatives F (k), k ≥ 1 either of the same or alternating
sign in [−1, 1]. Then, we have

‖F − Pq
F‖ = max

{∣∣F(−1) − Pq
F (−1)

∣∣ , ∣∣F(1) − Pq
F (1)

∣∣} ,

123



422 J Glob Optim (2017) 68:413–438

and ‖F − P̂q
F‖ = max

{∣∣F(−1) − P̂q
F (−1)

∣∣ , ∣∣F(1) − P̂q
F (1)

∣∣}
for any q ≥ 0, with Pq

F and P̂q
F given by (4) and (7), respectively.

Proof See “Appendix 1”. ��
This method of calculating the remainder is particularly useful as functions satisfying the
conditions of Lemma 1 include the exponential, logarithm, inverse and square-root functions
on any finite interval in their domains of definition.

3.5 Range bounding

A range bounder of the Chebyshev model (Pq
f,Y , Rq

f,Y ) of a function f : Z ⊆ R
n → R on

Y ⊂ Z is the set [Pq
f,Y ]+Rq

f,Y ∈ IR, with [Pq
f,Y ] ⊇ {Pq

f (ξ) | ξ ∈ [−1, 1]n}. Such bounders
are needed for computing binary product and univariate operations in Chebyshev model
arithmetic—see Sects. 3.3 and 3.4 above, thus directly affecting the tightness of the computed
Chebyshev models. Unfortunately, exact range bounding for multivariate polynomials is NP-
hard, so one has to resort to some sort of over-approximation in practice.

A number of methods exist for bounding the range of multivariate polynomials in mono-
mial form [20,30,36,43], which can be readily adapted to their Chebyshev counterparts.
Apart from the naive bounding of each term separately,[

Pq
f,Y

]
= aqY,0 +

∑
0<|κ|≤q

∣∣∣aqY,κ

∣∣∣ [−1, 1], (30)

which may produce weak bounds, this subsection presents adaptations of: (i) the methods in
[33] that involves exact bounding of the first- and diagonal second-order terms; and (ii) the
method of Bernstein.

3.5.1 Exact bounding of first- and diagonal second-order terms

We start by rewriting the polynomial part in the form

Pq
f,Y (ξ) =

n∑
j=1

[
aq
Y,κ2, j

T2(ξ j ) + aq
Y,κ1, j

T1(ξ j )
]

+ Hq
f,Y (ξ),

where κ1, j and κ2, j are the multi-indices given by κ
1, j
i := δi, j and κ

2, j
i := 2δi, j for each

j ∈ {1, . . . , n}, using the Kronecker δ notation; and Hq
f,Y is the multivariate polynomial

containing the same terms as Pq
f,Y apart from those indexed by κ1

j and κ2
j . Then, a similar

rearrangement to the one proposed in [33] can be obtained by using the property that T2(ξ) =
2T1(ξ)2 − 1,

Pq
f,Y (ξ) =

n∑
j=1

⎡
⎢⎣2aqY,κ2, j

(
T1(ξ j ) +

aq
Y,κ1, j

4aq
Y,κ2, j

)2

− aq
Y,κ2, j

−
(
aq
Y,κ1, j

)2
8aq

Y,κ2, j

⎤
⎥⎦+ Hq

f,Y (ξ).

This way, an interval enclosure is obtained as

[
Pq

f,Y

]
=

n∑
j=1

⎡
⎢⎣2aqY,κ2, j

(
[−1, 1] +

aq
Y,κ1, j

4aq
Y,κ2, j

)2

− aq
Y,κ2, j

−
(
aq
Y,κ1, j

)2
8aq

Y,κ2, j

⎤
⎥⎦+

[
Hq

f,Y

]
,
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with [Hq
f,Y ] computed directly from (30). This bounder may only be considered when

|aq
Y,κ2, j

| ≥ ε, where ε is a small positive number; otherwise, separate bounding of the linear
and quadratic terms for the corresponding component j as in (30) may be used.

3.5.2 Bounding method of Bernstein

The Bernstein algorithm is a well-established tool for computing bounds on the range of
multivariate polynomials over a box; see, e.g., [20,30] and references therein. The procedure
involves rewriting the multivariate polynomial from Chebyshev form into Bernstein form:

∀ξ ∈ [−1, 1]n, Pq
f,Y (ξ) =

∑
κ∈{0,...,r}n

bqY,κ

n∏
i=1

Br
κi

(
ξi + 1

2

)
, (31)

with r ≥ q , and where Br
i , with i ≤ r , denotes the i th Bernstein polynomial of order r on

[0, 1], given by

Br
i (z) =

(
r

i

)
zi (1 − z)k−i .

In particular, the Bernstein coefficient bqY,κ in (31) can be expressed in terms of the Chebyshev

coefficients aqY,κ as follows [48]

∀κ ∈ {0, . . . , r}n, bqY,κ =
∑
|ν|≤q

aqY,ν

n∏
i=1

Mκi ,γi

with: Mk, j :=
(
r

k

)−1 min{ j,k}∑
i=max{0, j+k−r}

(−1) j−i
(
2 j

2i

)(
r − j

k − i

)
.

This transformation turns out to be particularly well-conditioned from a numerical stability
standpoint [48]. At this point, an interval enclosure of Pq

f,Y on [−1, 1]n is simply obtained
as [

Pq
f,Y

]
=
[

min
ν∈{0,...,r}n b

q
Y,ν , max

ν∈{0,...,r}n b
q
Y,ν

]
.

The main advantage of this approach is that the foregoing enclosure converges to the actual
polynomial range in the Hausdorff sense as the order r increases [20].Moreover, it is possible
to bound the actual under- or over-estimation for a given order r ≥ q .

4 Convergence analysis

This section presents an analysis of the local convergence rate of Chebyshev models con-
structed from the application of the arithmetic operations described in Sect. 3. The global
convergence of this arithmetic as the polynomial expansion order q increases is also discussed
at the end of the section.

Definition 2 Let the function f : Z → R be defined on Z ⊆ R
n . The scheme

(Pq
f,Y , Rq

f,Y )Y⊂Z of qth-order Chebyshev models for f , with

Pq
f,Y (ξ) :=

∑
|κ|≤q

aqY,κTκ (ξ),
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is said to have local convergence order r on Z if

∀κ ∈ N
n with |κ| ≤ q, aqY,κ = O

(
(rad Y )min{|κ|,r}) (32)

and rad Rq
f,Y = O ((rad Y )r

)
, (33)

for all interval vectors Y ⊂ Z with sufficiently small rad Y .

Notice the extra conditions (32) imposed on the coefficients of the polynomial approximant
in the previous definition. While these conditions are not strictly necessary to establish local
convergence, the propagation of (local) convergence order for the polynomial coefficients
through binary sum, binary product and univariate outer-composition operations provides
insight into the propagation of the convergence order for the remainder term in the following
analysis.

As far as initialization is concerned, it is clear that a scheme of qth-order Chebyshev
models (Pq

zi ,Y
, Rq

zi ,Y
)Y⊂Z for the variable zi ∈ Zi with i ∈ {1, . . . , n}, as given by (11) and

(12), has local convergence order 1 if q = 0, and infinite order if q ≥ 1. In both cases, the
schemes of qth-order Chebyshevmodels for the variables thus have convergence order no less
than q + 1. Regarding the range bounders introduced in Sect. 3.5, the convergence condition
(32) imposes that rad ([Pq

f,Y ] + Rq
f,Y ) = O(rad Y ) whenever the scheme (Pq

f,Y , Rq
f,Y )Y⊂Z

has convergence order r ≥ 1.
Next, we investigate the local convergence order of schemes of Chebyshev models as

propagated through factorable functions, with the corresponding binary sum, binary product
and univariate outer-composition operations derived in Sects. 3.2–3.4.With regards to binary
sum operations given by (13)–(14), the sum of two schemes of qth-order Chebyshev models
trivially preserves the least convergence order of the operands, be they smaller than, equal
to, or larger than q + 1. In particular, the addition/subtraction of two schemes with local
convergence order q + 1 is itself a scheme of order q + 1. The propagation of convergence
orders through binary product and univariate outer-composition operations is somewhatmore
involved, and detailed in Sects. 4.1 and 4.2.

4.1 Local convergence rate of binary product operations

Adopting the notation introduced in Sect. 3.3, we assume here that the schemes of qth-order
Chebyshevmodels (Pq

f1,Y
, Rq

f1,Y
)Y⊂Z and (Pq

f2,Y
, Rq

f2,Y
)Y⊂Z have local convergence orders

r1 ≥ 1 and r2 ≥ 1 on Z , respectively.
The following lemma is instrumental to prove convergence of the Chebyshev coefficients

in the product scheme:

Lemma 2 For any q ≥ 0, any κ ∈ N
q , and any pair (λ, μ) ∈ Pq(κ), we have |λ+μ| ≥ |κ|.

Proof By construction of Pq(κ) in (15), we either have λi + μi = κi or |λi − μi | = κi , for
each i ∈ {1, . . . , n}. Therefore, the result follows by noting that λi + μi ≥ |λi − μi |. ��

By the construction of the product polynomial in (16) and by Lemma 2, we have

∣∣∣cqY,κ

∣∣∣ ≤ ∑
(λ,μ)∈Pq (κ)

∣∣∣aqY,λ

∣∣∣ ∣∣∣bqY,μ

∣∣∣
2N (λ,μ)

= O
(
(rad Y )min{r1,r2,|κ|}) , (34)
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for every κ ∈ N
n with |κ| ≤ 2q . Therefore, the product rule (17) propagates the least

convergence order of the operands through the polynomial coefficients, up to order |κ|.
Moreover, we have [Pq

f1,Y
] = O(1), [Pq

f2,Y
] = O(1), and∑

q<|κ|≤2q

∣∣∣cqY,κ

∣∣∣ [−1, 1] = O
(
(rad Y )min{r1,r2,q+1}) ,

so it follows from the remainder propagation rule (18) that

rad Rq
f1 f2,Y

= O
(
(rad Y )min{r1,r2,q+1}) . (35)

Overall, the least convergence order of the operands thus propagates through the remainder,
up to order q + 1. In particular, the product scheme has local convergence order q + 1
whenever both operands have convergence order q + 1. These results are summarized in the
following theorem:

Theorem 1 Let (Pq
f1,Y

, Rq
f1,Y

)Y⊂Z and (Pq
f2,Y

, Rq
f2,Y

)Y⊂Z be schemes of qth-order Cheby-
shev models, with local convergence orders r1 ≥ 1 and r2 ≥ 1, respectively, for the functions
f1, f2 : Z ⊆ R

n → R. Then, the product scheme (Pq
f1 f2,Y

, Rq
f1 f2,Y

)Y⊂Z given by (17) and
(18) has local convergence order min{r1, r2, q + 1}.
4.2 Local convergence rate of univariate outer-composition operations

Using the notation introduced in Sect. 3.4, we assume that the outer functions F : X ⊆
R → R is s-times continuously differentiable, and we consider the scheme of qth-order
Chebyshevmodels (Pq

F,W , Rq
F,W )W⊂X , as constructed from (25), (26) [resp. from (26), (28)]

if s ≥ q + 1; or otherwise constructed from (25), (27) [resp. from (28), (29)] if F (s) has a
finite total variation on X .

Lemma 3 The scheme (Pq
F,W , Rq

F,W )W⊂X has local convergence order min{s, q + 1} on
X.

Proof See “Appendix 2”. ��
To carry out the analysis, we also assume that the scheme of qth-order Chebyshev

models (Pq
f,Y , Rq

f,Y )Y⊂Z for the inner functions f : Z ⊆ R
n → R has local conver-

gence order r ≥ 1. Notice that the Clenshaw summations (20)–(22) consists of binary sum
and product operations only and is initialized with constants. However, by construction of
(Pq

Φ,Y , Rq
Φ,Y )Y⊂Z in (19), we have

aqY,0 = 0, ∀κ ∈ N
n with 1 ≤ |κ| ≤ q, aqY,κ = O

(
(rad Y )min{|κ|,r}−1

)
,

and rad Rq
Φ,Y = O ((rad Y )r−1) ,

where aqY,κ denote the coefficients of Pq
Φ,Y . Even though (Pq

Φ,Y , Rq
Φ,Y )Y⊂Z has local con-

vergence order r − 1 only, the following lemma shows that the original order r of the inner
operand nonetheless propagates through the scheme (Pq

PF◦Φ,Y , Rq
PF◦Φ,Y )Y⊂Z , up to order

q + 1:

Lemma 4 The scheme (Pq
PF◦Φ,Y , Rq

PF◦Φ,Y )Y⊂Z generated through theClenshaw recursion
(20)–(22) satisfies

∀κ ∈ N
n with |κ| ≤ q, cqY,κ = O

(
(rad Y )min{|κ|,r,s}) ,
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rad Rq
PF◦Φ,Y = O

(
(rad Y )min{r,q+1}) ,

where cqY,κ denote the coefficients of Pq
PF◦Φ,Y .

Proof See “Appendix 3”. ��
A direct consequence of Lemmata 3 and 4 is that the remainder term Rq

F◦ f,Y , as defined
in (24), has convergence order min{r, s, q+1}. Therefore, the convergence order of the inner
operand may propagate through the remainder, up to order q + 1, in a qth-order scheme of
Chebyshev models. Moreover, if the outer operand is s-times continuously differentiable,
the convergence order of the composition scheme may not be larger than s. In particular, the
composition scheme has convergence order q+1whenever the inner scheme has convergence
order q + 1 and the outer function is q + 1-times continuously differentiable. These results
are summarized in the following theorem:

Theorem 2 Let (Pq
F,W , Rq

F,W )W⊂X be a scheme of qth-order Chebyshev models for the
s-times continuously-differentiable function F : X ⊆ R → R, as constructed from (25), (26)
[resp. from (26), (28)] if s ≥ q + 1; or otherwise constructed from (25), (27) [resp. from
(28), (29)] if F (s) has a finite total variation on X. Let also (Pq

f,Y , Rq
f,Y )Y⊂Z be a scheme

of qth-order Chebyshev models for the function f : Z ⊆ R
n → R with local convergence

order r ≥ 1. Then, the composition scheme (Pq
F◦ f,Y , Rq

F◦ f,Y )Y⊂Z given by (23) and (24)
has convergence order min{r, s, q + 1} on Z.

4.3 Global convergence of Chebyshev model arithmetic

The previous convergence analysis investigates the rate at which the remainder bound shrinks
as the domain Y of the variables is progressively reduced to a point, for a given expansion
order q . This section discusses a different type of convergence, namely the property of the
remainder bound to shrink to zero upon increasing the expansion order q → ∞, for a fixed
variable domain Y .

Definition 3 Let the function f : Z → R be defined on Z ⊆ R
n , and let IRn � Y ⊂ Z . The

scheme (Pq
f,Y , Rq

f,Y )q≥0 of qth-order Chebyshev models for f , with

Pq
f,Y (ξ) :=

∑
|κ|≤q

aqY,κTκ (ξ),

is said to be globally convergent on Y if

lim
q→∞

∑
|κ|≤q

∣∣∣aqY,κ

∣∣∣ = ĀY < ∞ and lim
q→∞ Rq

f,Y = {0}. (36)

As far as initialization is concerned, it is clear that a scheme of qth-order Chebyshev
models (Pq

yi ,Y
, Rq

yi ,Y
)q≥0 for the variable yi ∈ Yi with i ∈ {1, . . . , n}, as given by (11) and

(12), is globally convergent on Y . Regarding the range bounders introduced in Sect. 3.5, it is
also worth noting that the sequence {rad [Pq

f,Y ]}q≥0 is bounded when (36) holds.
Next, we adopt the notation introduced in Sects. 3.2 and 3.3, and we assume that the

schemes (Pq
f1,Y

, Rq
f1,Y

)q≥0 and (Pq
f2,Y

, Rq
f2,Y

)q≥0 are globally convergent on Y . The sum-

mation/subtraction scheme (Pq
f1± f2,Y

, Rq
f1± f2,Y

)q≥0, as given in (14), is trivially globally
convergent by the triangle inequality. Concerning the product operation in Sect. 3.3, we have
from (16) that
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∑
|κ|≤q

∣∣∣cqY,κ

∣∣∣ = ∑
|κ|≤q

∣∣∣∣∣∣
∑

(λ,μ)∈Pq (κ)

aqY,λb
q
Y,μ

2N (λ,μ)

∣∣∣∣∣∣
≤
∑
|κ|≤q

∑
(λ,μ)∈Pq (κ)

∣∣∣aqY,λ

∣∣∣ ∣∣∣bqY,μ

∣∣∣
2N (λ,μ)

=
∑
|λ|≤q

∑
|μ|≤q

∣∣∣aqY,λ

∣∣∣ ∣∣∣bqY,μ

∣∣∣ ,
so

lim
q→∞

∑
|κ|≤q

∣∣∣cqY,κ

∣∣∣ ≤ lim
q→∞

∑
|λ|≤q

∣∣∣aqY,λ

∣∣∣ ∑
|μ|≤q

∣∣∣bqY,μ

∣∣∣ < ∞,

and, in particular,

lim
q→∞

∑
q<|κ|≤2q

∣∣∣cqY,κ

∣∣∣ ≤ lim
q→∞

∑
|κ|>q

∣∣∣cqY,κ

∣∣∣ = 0.

It then follows from (18) that the product scheme (Pq
f1 f2,Y

, Rq
f1 f2,Y

)q≥0 is globally con-

vergent on Y , as long as the sequences {rad [Pq
f1,Y

]}q≥0 and {rad [Pq
f2,Y

]}q≥0 are bounded.
These considerations are summarized in the following theorem:

Theorem 3 Let (Pq
f1,Y

, Rq
f1,Y

)Y⊂Z and (Pq
f2,Y

, Rq
f2,Y

)Y⊂Z be globally convergent schemes
of Chebyshev models for the functions f1, f2 : Z ⊆ R

n → R, respectively. Then, the
summation/subtraction scheme (Pq

f1± f2,Y
, Rq

f1± f2,Y
)q≥0 given by (13) and (14) is globally

convergent on Y ; and so is the product scheme (Pq
f1 f2,Y

, Rq
f1 f2,Y

)q≥0 given by (17) and (18)
for the range bounding methods in Sect. 3.5.

In order to formally establish global convergence of the Chebyshev model arithmetic pre-
sented in Sect. 3, one also needs to establish sufficient conditions on both the inner and outer
operands of a composition operation in order for the resulting composition scheme to be
globally convergent. The development of such conditions calls for an analysis of the propa-
gation of the global convergence property through the Clenshaw recurrence, for which results
are currently lacking. The numerical case studies presented in the following sections suggest
that global convergence might be guaranteed under mild regularity conditions nonetheless,
and this will be the topic of further research.

5 Numerical implementation and case studies

This section presents numerical case studies that illustrate the convergence properties of
Chebyshev models, and makes comparisons with Taylor models in terms of tightness and
computational effort. All the computations that led to these results are performed with
the library MC++ (http://omega-icl.bitbucket.org/mcpp/), which features classes for the
evaluation of factorable functions in Taylor and Chebyshev arithmetics (along with other
arithmetics). Verified interval libraries, such as PROFIL (http://www.ti3.tu-harburg.de/) or
FILIB++ (http://www2.math.uni-wuppertal.de/~xsc/), are used to perform the remainder
interval computations, but any round-off caused by operations between the polynomial coef-
ficients is not accounted for in the current implementation.We note that approaches to account
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Fig. 1 Number of FLOP for performing polynomial product in monomial basis (left plot) and in Chebyshev
basis (right plot)

for errors due to floating-point arithmetic are well-documented for Taylor models [36,43],
and the very same approaches may be used for Chebyshev models in order to arrive at a fully
verified implementation.

MC++ implements the Chebyshev model arithmetic and range bounding operations
described in Sect. 3, based on a dense representation of the multivariate polynomials. If
not otherwise noted, Chebyshev models for the intrinsic functions are computed based on
the Chebyshev interpolation polynomial. Moreover, the exact remainder bounding approach
established in Sect. 3.4 is used for the intrinsic functions exp(x), log(x),

√
x , and 1

x ,
and the default range bounder uses exact bounding of first- and diagonal second-order
terms as described in Sect. 3.5. Another improvement involves intersecting the polyno-
mial model bounds with those derived from simple interval analysis at each operation as
a means of tightening the remainder bound, avoiding division by zero, etc; this extension
is similar in essence to the mixed affine-arithmetic/interval-arithmetic model by Stolfi and
Figueiredo [19].

The most critical operation in an efficient implementation is multiplication of Cheby-
shev models, since it is used extensively in univariate outer-composition operations besides
bivariate product operations. The approach used in MC++ involves constructing the index
sets Pq(κ) given by (15), for all κ ∈ N

n with |κ| ≤ q , prior to propagating the Chebyshev
models through a DAG of the factorable function. The number of floating-point operations
(FLOP) required to compute the product polynomial Pq

f1 f2,Y
in (17) is shown on the left

plot of Fig. 1 for Chebyshev expansions of order q = 1, . . . , 4 and for functions with up to
n = 19 variables. Even for low expansion orders does performing polynomial products in
Chebyshev basis result in an increase by 1 or 2 orders of magnitude in the number of FLOP,
compared with monomial basis which is shown on the right plot. The better approximation
capability of Chebyshev models may thus come at the price of a much higher computational
burden compared with Taylor models, at least in a dense implementation. This refinement
calls for the development of sparse implementations for both Taylor and Chebyshev model
arithmetics in order to overcome this limitation and tackle larger-scale problems, a topic for
future research.
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Fig. 2 Application of Chebyshev models to Example 1. Top-left plot polynomial model enclosures of the
function f (black line) for expansion orders q = 2, 3, 5, 7. Top-right plot approximation error for expansion
orders q = 2, 3, 5, 7. Bottom-left plot local convergence analysis for a sequence of shrinking interval sets
Y ⊂ X around x = 1. Bottom-right plot global convergence analysis on X as q → ∞ with the exact
remainder estimate compared with the high-order derivative-based remainder formula

5.1 Example 1

We consider the univariate function f given by

f (x) = exp

(
−x2 + 1

x

)
,

for the variable x ∈ X := [0.3, 2]. A number of Chebyshev model enclosures for various
expansion orders q in the range 2-7 are shown on the top-left plot of Fig. 2, along with the
corresponding approximation errors on the opposite plot. The scheme of Chebyshev models
appears to be globally convergent as q → ∞, both with the derivative-based remainder
formula and with the exact remainder formula for the univariate outer-composition opera-
tions, as shown on the bottom-right plot of Fig. 2. However, the use of the exact remainder
significantly tightens the bounds and improves the rate of convergence. In contrast, classical
Taylor models fail to converge to the function as the order q is increased, despite the func-
tion f being analytic on the set X . This is because the variable range of interest is partially
outside the radius of convergence for this function, which also means that the width of the
interval remainder increases with q . Finally, the bottom-left plot on Fig. 2 shows that local
convergence of qth-order Chebyshev model is of order q+1 around x = 1. This observation
is consistent with the analysis conducted in Sect. 4 since f is analytic.
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Fig. 3 Application of Chebyshev models to Example 2. Top-left plot Polynomial model enclosures of the
function f (black line) for expansion orders q = 2, 4, 8, 16. Top-right plot approximation error for expansion
orders q = 2, 4, 8, 16. Bottom-left plot local convergence analysis for a sequence of shrinking interval sets
Y ⊂ X around x = 0.Bottom-right plot global convergence analysis on X as q → ∞with the derivative-based
remainder formula or the reformulation as |x | = √

x2

5.2 Example 2

We consider the univariate function f given by

f (x) = sin |x |,
for the variable x ∈ X := [−π

2 , π
4

]
. Notice that classical Taylor models may not be used to

bound the function f on X given the nonsmoothness at x = 0. In contrast, Chebyshevmodels
can be constructed since the univariate sin(x) is analytic in R, whereas the derivative of |x |
has total bounded variation on X . The top plots in Fig. 3 shows how the bounds improve with
a larger expansion order q , up to q = 16. It is evident that a much higher-order expansion is
necessary in comparison with the smooth function in the previous example (Sect. 5.1), and
that the approximation error is the largest close to x = 0. In agreement with the theory in
Sect. 4, the local convergence of any qth-order Chebyshev model at this point is of order 1,
regardless of the expansion order q ≥ 0; a prediction that is confirmed in the bottom-left plot
of Fig. 3. But despite the nonsmoothness at x = 0 and the linear local convergence around
this point, Chebyshev models are found to be globally convergent on X as q → ∞, when
the remainder formula (29) is used for bounding the remainder of the univariate term |x |
(bottom-right plot on Fig. 2).

Notice that this function may also be reformulated by substitution of |x | = √
x2, thus

providing an alternative route to creating the Chebyshev model. This reformulation makes
the use of the exact remainder estimate for the square-root term possible, which explains
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why tighter bounds for Chebyshev models of order q = 5 or less are obtained here with the
reformulation approach (bottom-right plot of Fig. 3). However, the reformulation also causes
Chebyshev models to diverge on X as q → ∞, a behavior attributed to the fact that the total
variation of the square-root term is unbounded on intervals containing zero.

5.3 Example 3

As a final example, we consider the multivariate function f given by

f (x) = exp

(
n∑

i=1

xi

)
cos

(
2π

n∑
i=1

xi

)
,

for the variable x ∈ X := [−0.6, 0.6]n , with the dimension n taken as 2, 3 or 4. The
Chebyshev model enclosure and corresponding approximation error in the 2-variable case
are presented on the left part of Fig. 4 for an expansion of order q = 8, showing a tight
approximation of the function. From the right plot of Fig. 4, it is seen that the computational
burden increases with both the expansion order q and the dimension n of the problem.
Moreover, computing Chebyshevmodels (solid lines) is more demanding than Taylor models
(dashed lines), due to the extra complexity of the polynomial product in Chebyshev basis (see
Fig. 1 above and related discussion). However, this extra complexity pays off in terms of the
tightness of the resulting bounds. For n = 2, one must consider expansions of order greater
than q = 18 in order for a Taylor model’s remainder bound to be as tight as those given by
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a second-order Chebyshev models only. For n = 3 or n = 4 likewise, although the Taylor
models appear to be globally convergent on X , an expansion order far greater than q = 20
would be necessary in order to be competitive with just second-order Chebyshev models.
Overall, Chebyshevmodels thus outperform their Taylor counterparts. Finally, it is interesting
to note that as the function f being even, odd ordered polynomial models prove to provide
tighter bounds than even ones, thus explaining why there is sometimes little improvement
(or even deterioration) in the bounds even though the computational time increases.

6 Conclusions

This paper has formalized an arithmetic for the propagation of Chebyshev models through
binary sums, binary products and univariate outer-composition operations in factorable func-
tions. A simple method to calculate the exact remainder bounds for certain univariate terms,
including exp(·), log(·), √· and (·)−1, is established. Adaptations of existing range bounders
for Taylor models in order to use them with Chebyshev models are also discussed, which
are a vital part of polynomial model arithmetic. The local convergence of Chebyshev models
has been analyzed and proven to be equivalent to Taylor models, although the Chebyshev
model remainder bounds are often found to be orders of magnitude better than their Taylor
model counterparts over larger variable domains. This behavior is supported by the result that
Chebyshev models are globally convergent through addition/subtraction and multiplication
operations. The global convergence property is also conjectured for composition of Cheby-
shev models under mild conditions, although sufficient conditions are yet to be formally
established. Such convergence properties have been illustrated through several numerical
examples, based on an implementation in the authors’ in-house library MC++. These exam-
ples also illustrate someof the advantages ofChebyshevmodels overTaylormodels, including
being able to bound functionswith points of non-smoothness or a divergent Taylor expansion.
Even though Chebyshev models of equivalent order are computationally more expensive to
create than their Taylor counterparts, mainly due to the much greater number of operations
required for the binary product operation, they provide benefits by being significantly tighter.
This may allow for a much lower order polynomial model to be used and creates a net benefit
in terms of computational effort.

On the computational side, the current implementation creates a polynomialwhich is of the
same order for all the variables and is stored using a dense representation. For many applica-
tions however, a large number of coefficientsmay be equal to zero, thereby calling for a sparse
implementation of Chebyshev model arithmetic. Such an implementation would reduce both
the computational time and the memory requirements. Another area of improvement would
concern the binary product operation, whose complexity currently scales exponentially in
the number of variables and the expansion order. Several studies have explored approaches
to speeding up the multiplication of univariate and bivariate polynomials in Chebyshev basis
(e.g., [2,5,22,45]). Ways to use some of these developments for multivariate Chebyshev
polynomials could be explored as part of future work. Binary product operations are also
where much of the overestimation occurs, given that the polynomial part of the Chebyshev
model product may not match the Chebyshev expansion of the product function. Instead, it
might be possible to directly create multivariable Chebyshev approximations, for instance
by following a similar approach as in chebfun2 [56]. This idea is also similar to the recent
work on multivariate McCormick relaxations [59], where instead of decomposing the fac-
torable function down to binary sums, products and univariate compositions, it would be
possible to directly bound some multivariate terms.
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Appendix 1: Proof of Lemma 1

Since F in Lipschitz continuous on [−1, 1], it has a unique representation as an absolutely
and uniformly convergent Chebyshev series, and we have

∀ξ ∈ [−1, 1], F(ξ) − Pq
F (ξ) =

∞∑
k=q+1

akTk(ξ),

with the Chebyshev coefficients given by

ak := 2

π

∫ π

0
f (cos(θ)) cos(kθ)dθ. (37)

Observe that ‖F − Pq
F‖ =∑∞

k=q+1 |ak | under the following scenarios:

(i) the coefficients ak with k ≥ q + 1 are of the same sign, either non-negative or non-
positive, in which case |F(1) − Pq

F (1)| = ∑∞
k=q+1 |ak | by the property that Tk(1) =

1,∀k ≥ 0;
(ii) the coefficients ak with k ≥ q+1 alternate sign, either non-negative for even coefficients

and non-positive for odd coefficients or vice-versa, in which case |F(−1)−Pq
F (−1)| =∑∞

k=q+1 |ak | by the property that Tk(−1) = (−1)k,∀k ≥ 0.

Without loss of generality, we shall prove that case (i) holds with non-negative Chebyshev
coefficients ak when F has an analytic extension on the closed unit disk and all its successive
derivatives are nonnegative on [−1, 1]; the other three cases follow readily by symmetry,
considering −F(ξ), F(−ξ) or −F(−ξ).

Under the assumption that F has an analytic extension on the closed unit disk, its Taylor
series at any point ξ̄ ∈ [−1, 1] converges to F on [−1, 1]. At ξ̄ = 0 in particular, we have

∀ξ ∈ [−1, 1], F(ξ) =
∞∑
k=0

F (k)(0)

k! ξ k =
∞∑
k=0

akTk(ξ
k). (38)

Recall that any polynomial Pq of order q ≥ 1, given in monomial basis by Pq(ξ) :=∑q
k=0 αkξ

k , has a unique representation in Chebyshev basis as Pq(ξ) = ∑q
k=0 βkTk(ξ)

with

∀k ∈ {1, . . . , q}, βk :=
q∑

i=1

αi

2i

i∑
j=0

(
i

j

)
δk,|i−2 j |.

By passing to the limit q → ∞, we obtain from (38) that

∀k ≥ 1, ak :=
∞∑
i=1

F (i)(0)

2i i !
i∑

j=0

(
i

j

)
δk,|i−2 j |. (39)
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If follows from the nonnegativity of all the successive derivatives F (i) that ak ≥ 0 for every
k ≥ 1.

Regarding Chebyshev interpolation, on the other hand, we have

∀ξ ∈ [−1, 1], F(ξ) − P̂q
F (ξ) =

q∑
k=0

(ak − âk) Tk(ξ) +
∞∑

k=q+1

akTk(ξ),

with the coefficients âk given by

âk := 2

q + 1

q∑
j=0

F(ζ j )Tk(ζ j ) withζ j := cos

(
π

2

j + 1

q + 1

)
. (40)

Like previously, we shall prove that

∥∥F − P̂q
F

∥∥ = ∣∣F(1) − P̂q
F (1)

∣∣ = ± (a0 − â0) +
q∑

k=1

(ak − âk) +
∞∑

k=q+1

ak

in the case that F has an analytic extension on the closed unit disk and all its successive
derivatives are nonnegative on [−1, 1]—the other cases following by symmetry. Since ak ≥ 0
for every k ≥ 1 under these assumptions, it is sufficient to prove that ak ≥ âk for each
k = 1, . . . , q . By the aliasing property of the Chebyshev polynomials [37], we have

∀k ∈ {0, . . . , q}, âk = ak − a2q+2−k − a2q+2+k + a4q+4−k + a4q+4+k − · · · (41)

and, therefore, the result follows by showing that ak ≥ ak+2 for every k ≥ 1. Considering
the case of odd coefficients first, (39) gives

a2k−1 =
∞∑
i=k

F (2i−1)(0)

22i−2(2i − 1)!
(
2i − 1

i − k

)

= F (2k−1)(0)

22k−2(2k − 1)! +
∞∑

i=k+1

F (2i−1)(0)

22i−2(2i − 1)!
(
2i − 1

i − k

)

= F (2k−1)(0)

22k−2(2k − 1)! +
∞∑

i=k+1

F (2i−1)(0)

22i−2(2i − 1)!
(

2i − 1

i − k − 1

)
i + k

i − k

≥ F (2k−1)(0)

22k−2(2k − 1)! + a2k+1,

and a similar result holds for even coefficients. ��

Appendix 2: Proof of Lemma 3

Let the Chebyshev coefficients of the function F on the subset W ⊂ X be denoted as

∀k ≥ 1, aW,k := 2

π

∫ 1

−1

F(mid W + ξ rad W )Tk(ξ)√
1 − ξ2

dξ.
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Since F is s-times continuously differentiable, Taylor’s theorem asserts that, for all ξ ∈
[−1, 1], there exists ζξ ∈ [−1, 1] such that

F(mid W + ξ rad W ) =
s−1∑
i=0

F (i)(mid W )

i ! (ξ rad W )i + F (s)(ζξ )

s! (ξ rad W )s .

Therefore, letting Mi := ‖F (i)‖X for 0 ≤ i ≤ s, we have

|aW,k | ≤
s−1∑
i=0

2(rad W )i Mi

π i !

∣∣∣∣∣
∫ 1

−1

ξ i Tk(ξ)√
1 − ξ2

dξ

∣∣∣∣∣+ 2(rad W )sMs

π s!
∫ 1

−1

|ξ sTk(ξ)|√
1 − ξ2

dξ.

Since
∫ 1
−1

ξ i Tk (ξ)√
1−ξ2

dξ = 0 for all i < k, | ∫ 1−1
ξ i Tk (ξ)√

1−ξ2
dξ | ≤ π for all i ≥ 0, and∫ 1

−1
|ξ s Tk (ξ)|√

1−ξ2
dξ ≤ π , we obtain

∀k ≥ 1, |aW,k | ≤ (rad W )k
s∑

i=k

2(rad W )i−kMi

i ! + (rad W )s
2Ms

s!
= O

(
(rad W )min{k,s}) .

Using Chebyshev interpolation likewise, a direct consequence of the aliasing property (41)
is that

∀k ∈ {1, . . . , q}, âW,k = O
(
(rad W )min{k,s}) .

The result of the lemma follows by noting that rad Rq
F,W = O((rad W )min{s,q+1}) by (26).

��

Appendix 3: Proof of Lemma 4

We start by showing, using finite recursion on k = q + 2, q + 1, . . . , 1, that the intermediate
schemes (Pq

βk ,Y
, Rq

βk ,Y
)Y⊂Z all satisfy

∀κ ∈ N
n, bqk,Y,κ =

{O ((rad Y )min{|κ|+k,r,s}) if 0 ≤ |κ| ≤ q − k
0 otherwise

(42)

rad Rq
βk ,Y

= O
(
(rad Y )min{r,q+1}) , (43)

where bqk,Y,κ denote the coefficients of Pq
βk ,Y

.

– This property is trivially satisfied for the schemes (Pq+1
βk ,Y

, Rq+1
βk ,Y

)Y⊂Z and (Pq+2
βk ,Y

,

Rq+2
βk ,Y

)Y⊂Z .

– Next, assume that the property holds for both (Pk+1
βk ,Y

, Rk+1
βk ,Y

)Y⊂Z and (Pk+2
βk ,Y

, Rk+2
βk ,Y

)Y⊂Z ,

and consider the resulting scheme (Pk
βk ,Y

, Rk
βk ,Y

)Y⊂Z through (21). Since [Pq
Φ,Y ] =

O(1) and [Pk+1
βk ,Y

] = O((rad Y )min{k+1,r,s}), the remainder of the product scheme

(Pq
Φ,Y , Rq

Φ,Y )(Pq
βk+1,Y

, Rq
βk+1,Y

) has order O((rad Y )min{r,q+1}), and so Rk
βk ,Y

satisfies

condition (43). Concerning the polynomial part, the effect of multiplying Pq
βk+1,Y

with

Pq
Φ,Y is a reduction of the order of all the coefficients bqk+1,Y,κ by one order. Moreover,
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subtractingPq
βk+2,Y

does not change the order of the coefficients and by Lemma 3 the lead

coefficient ϕ
q
Bq
Y ,k

has order O((rad Y )min{k,s}). Therefore, the coefficients bqk,Y,κ satisfy

condition (42), too.

The same reasoning applies in taking the recurrence one step further through (20), thereby
giving the result. ��
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