120 research outputs found

    Nitrogen enrichment in macroalgae following mass coral mortality

    Get PDF
    Scleractinian corals are engineers on coral reefs that provide both structural complexity as habitat and sustenance for other reef-associated organisms via the release of organic and inorganic matter. However, coral reefs are facing multiple pressures from climate change and other stressors, which can result in mass coral bleaching and mortality events. Mass mortality of corals results in enhanced release of organic matter, which can cause significant alterations to reef biochemical and recycling processes. There is little known about how long these nutrients are retained within the system, for instance, within the tissues of other benthic organisms. We investigated changes in nitrogen isotopic signatures (ÎŽ15N) of macroalgal tissues (a) ~ 1 year after a bleaching event in the Seychelles and (b) ~ 3 months after the peak of a bleaching event in Mo’orea, French Polynesia. In the Seychelles, there was a strong association between absolute loss in both total coral cover and branching coral cover and absolute increase in macroalgal ÎŽ15N between 2014 and 2017 (adjusted r2 = 0.79, p = 0.004 and adjusted r2 = 0.86, p = 0.002, respectively). In Mo’orea, a short-term transplant experiment found a significant increase in ÎŽ15N in Sargassum mangarevense after specimens were deployed on a reef with high coral mortality for ~ 3 weeks (p < 0.05). We suggest that coral-derived nutrients can be retained within reef nutrient cycles, and that this can affect other reef-associated organisms over both short- and long-term periods, especially opportunistic species such as macroalgae. These species could therefore proliferate on reefs that have experienced mass mortality events, because they have been provided with both space and nutrient subsidies by the death and decay of corals. © 2021, The Author(s)

    Responses of coral reef fishes to past climate changes are related to life‐history traits

    Get PDF
    Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present-day distributions of coral reef fish species. We investigated whether species- specific responses are associated with life-history traits. We collected a database of coral reef fish distribution together with life-history traits for the Indo-Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo-Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change

    A predictive model based on multiple coastal anthropogenic pressures explains the degradation status of a marine ecosystem: Implications for management and conservation

    Get PDF
    International audienceDuring the last fifty years, there has been a dramatic increase in the development of anthropogenic activities, and this is particularly threatening to marine coastal ecosystems. The management of these multiple and simultaneous anthropogenic pressures requires reliable and precise data on their distribution, as well as information (data, modelling) on their potential effects on sensitive ecosystems. Focusing on Posidonia oceanica beds, a threatened habitat-forming seagrass species endemic to the Mediterranean, we developed a statistical approach to study the complex relationship between human multiple activities and ecosystem status. We used Random Forest modelling to explain the degradation status of P. oceanica (defined herein as the shift from seagrass bed to dead matte) as a function of depth and 10 anthropogenic pressures along the French Mediterranean coast (1700 km of coastline including Corsica). Using a 50 x 50 m grid cells dataset, we obtained a particularly accurate model explaining 71.3 % of the variance, with a Pearson correlation of 0.84 between predicted and observed values. Human-made coastline, depth, coastal population, urbanization, and agriculture were the best global predictors of P. oceanica's degradation status. Aquaculture was the least important predictor, although its local individual influence was among the highest. Non-linear relationship between predictors and seagrass beds status was detected with tipping points (i.e. thresholds) for all variables except agriculture and industrial effluents. Using these tipping points, we built a map representing the coastal seagrass beds classified into four categories according to an increasing pressure gradient and its risk of phase shift. Our approach provides important information that can be used to help managers preserve this essential and endangered ecosystem

    Mesophotic coral ecosystems of French Polynesia are hotspots of alpha and beta generic diversity for scleractinian assemblages

    Get PDF
    Aim: Revealing how diversity varies across the depth gradient is key for understanding the role of mesophotic coral ecosystems in the functioning of coral reefs. We quantitatively examined how alpha and beta generic diversity of scleractinian coral assemblages vary across a wide depth gradient for coral reefs. Location: Sixteen sites in eight islands of three archipelagos in French Polynesia. Methods: We studied generic diversity patterns of scleractinian corals, as derived from the analysis of photo-quadrats, across the seafloor from shallow to lower mesophotic depths (6–120 m) and on a wide geographic scale. Our sampling considered quantitative coral cover to explore the patterns of alpha and beta components of diversity across depth and horizontal space. Results: We show that in French Polynesia, mesophotic coral ecosystems host higher alpha and beta generic diversity than shallow reefs despite decreasing coral cover with depth. The variation of coral genus richness across the depth gradient is mainly driven by a mid-domain effect with a peak at 40 m depth. At the same time, we found that the differences in coral genera across islands (spatial beta-diversity) increased steadily along the depth gradient. Main conclusions: Our findings report the first quantitative results of coral cover and diversity from mesophotic coral ecosystems in French Polynesia and also present one of the few existing studies to examine the broad breadth of the mesophotic depth gradient. We demonstrate that mesophotic depths can host unexpectedly high generic richness of scleractinian coral assemblages. At the same time, we showed that increasing depth increases the differences in generic diversity composition across islands, whereas shallow reefs are similar in between. While a single island could conserve shallow regional biodiversity, mesophotic depths containing the richest diversity require site-specific measures, suggesting that considering these mesophotic depths in conservation is necessary to maintain regional diversity

    Seafloor integrity down the harbor waterfront: the coralligenous shoals off Vado Ligure (NW Mediterranean)

    Get PDF
    In the last ten years, European Directives stressed the necessity to assess the ecological status of marine habitats by means of ecosystem or landscape indicators, rather than just species or chemical ones. In this paper, the seascape approach to characterise and assess the ecological quality of coralligenous rocky shoals of Vado Ligure (Savona, Italy) is introduced. This approach integrates biological, mesological and geomorphological information collected with a Rapid Visual Assessment technique (RVA). The RVA also optimised underwater operations in deep waters where coralligenous reefs usually develop and provided a sufficient amount of data collected by direct inspection. The seascape approach results are appropriate for the characterisation of the coralligenous shoals studied and for the assessment of their ecological quality. The quality of the assemblages was in general low, mainly due to high sedimentary stress; however, some exceptions showing a high ecological quality indicate that, with proper manage- ment tools, they would still have good potentialities of recovery

    Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs

    Get PDF
    When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought

    Ecological dependencies make remote reef fish communities most vulnerable to coral loss

    Get PDF
    yEcosystems face both local hazards, such as over-exploitation, and global hazards, such as climate change. Since the impact of local hazards attenuates with distance from humans, local extinction risk should decrease with remoteness, making faraway areas safe havens for biodiversity. However, isolation and reduced anthropogenic disturbance may increase ecological specialization in remote communities, and hence their vulnerability to secondary effects of diversity loss propagating through networks of interacting species. We show this to be true for reef fish communities across the globe. An increase in fish-coral dependency with the distance of coral reefs from human settlements, paired with the far-reaching impacts of global hazards, increases the risk of fish species loss, counteracting the benefits of remoteness. Hotspots of fish risk from fish-coral dependency are distinct from those caused by direct human impacts, increasing the number of risk hotspots by similar to 30% globally. These findings might apply to other ecosystems on Earth and depict a world where no place, no matter how remote, is safe for biodiversity, calling for a reconsideration of global conservation priorities.Peer reviewe

    Global tropical reef fish richness could decline by around half if corals are lost

    Get PDF
    Reef fishes are a treasured part of marine biodiversity, and also provide needed protein for many millions of people. Although most reef fishes might survive projected increases in ocean temperatures, corals are less tolerant. A few fish species strictly depend on corals for food and shelter, suggesting that coral extinctions could lead to some secondary fish extinctions. However, secondary extinctions could extend far beyond those few coral-dependent species. Furthermore, it is yet unknown how such fish declines might vary around the world. Current coral mass mortalities led us to ask how fish communities would respond to coral loss within and across oceans. We mapped 6964 coral-reef-fish species and 119 coral genera, and then regressed reef-fish species richness against coral generic richness at the 1 degrees scale (after controlling for biogeographic factors that drive species diversification). Consistent with small-scale studies, statistical extrapolations suggested that local fish richness across the globe would be around half its current value in a hypothetical world without coral, leading to more areas with low or intermediate fish species richness and fewer fish diversity hotspots.Peer reviewe

    Plate tectonics drive tropical reef biodiversity dynamics

    Get PDF
    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics

    Nutrient limitation, bioenergetics and stoichiometry: A new model to predict elemental fluxes mediated by fishes

    Full text link
    Energy flow and nutrient cycling dictate the functional role of organisms in ecosystems. Fishes are key vectors of carbon (C), nitrogen (N) and phosphorus (P) in aquatic systems, and the quantification of elemental fluxes is often achieved by coupling bioenergetics and stoichiometry. While nutrient limitation has been accounted for in several stoichiometric models, there is no current implementation that permits its incorporation into a bioenergetics approach to predict ingestion rates. This may lead to biased estimates of elemental fluxes.Here, we introduce a theoretical framework that combines stoichiometry and bioenergetics with explicit consideration of elemental limitations. We examine varying elemental limitations across different trophic groups and life stages through a case study of three trophically distinct reef fishes. Further, we empirically validate our model using an independent database of measured excretion rates.Our model adequately predicts elemental fluxes in the examined species and reveals species‐ and size‐specific limitations of C, N and P. In line with theoretical predictions, we demonstrate that the herbivore Zebrasoma scopas is limited by N and P, and all three fish species are limited by P in early life stages. Further, we show that failing to account for nutrient limitation can result in a greater than twofold underestimation of ingestion rates, which leads to severely biased excretion rates.Our model improved predictions of ingestion, excretion and egestion rates across all life stages, especially for fishes with diets low in N and/or P. Due to its broad applicability, its reliance on many parameters that are well‐defined and widely accessible, and its straightforward implementation via the accompanying r‐package fishflux, our model provides a user‐friendly path towards a better understanding of ecosystem‐wide nutrient cycling in the aquatic biome.A free Plain Language Summary can be found within the Supporting Information of this article.A free Plain Language Summary can be found within the Supporting Information of this article.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/5/fec13618_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/4/fec13618-sup-0002-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/3/fec13618-sup-0001-Summary.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/2/fec13618-sup-0003-AppendixS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162691/1/fec13618.pd
    • 

    corecore