4,430 research outputs found

    Nonlinear instability of density-independent orbital-free kinetic energy functionals

    Full text link
    We study in this article the mathematical properties of a class of orbital-free kinetic energy functionals. We prove that these models are linearly stable but nonlinearly unstable, in the sense that the corresponding kinetic energy functionals are not bounded from below. As a matter of illustration, we provide an example of an electronic density of simple shape the kinetic energy of which is negative.Comment: 14 pages, 1 figur

    The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)

    Get PDF
    MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower

    Electron correlation in solids via density embedding theory

    Get PDF
    Density matrix embedding theory (Phys. Rev. Lett. 109, 186404 (2012)) and density embedding theory ((Phys. Rev. B 89, 035140 (2014)) have recently been introduced for model lattice Hamiltonians and molecular systems. In the present work, the formalism is extended to the ab initio description of infinite systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and demonstrated in cases of 1, 2 and 3 dimensions, using coupled cluster theory as the impurity solver. Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The current approach yields results comparable to coupled cluster calculations of infinite systems even when using a single unit cell as the fragment. The theory is formulated in the basis of Wannier functions but it does not require separate localization of unoccupied bands. The embedding scheme presented here is a promising way of employing highly accurate electronic structure methods for extended systems at a fraction of their original computational cost

    High-density correlation energy expansion of the one-dimensional uniform electron gas

    Full text link
    We show that the expression of the high-density (i.e small-rsr_s) correlation energy per electron for the one-dimensional uniform electron gas can be obtained by conventional perturbation theory and is of the form \Ec(r_s) = -\pi^2/360 + 0.00845 r_s + ..., where rsr_s is the average radius of an electron. Combining these new results with the low-density correlation energy expansion, we propose a local-density approximation correlation functional, which deviates by a maximum of 0.1 millihartree compared to the benchmark DMC calculations.Comment: 7 pages, 2 figures, 3 tables, accepted for publication in J. Chem. Phy

    Exchange parameters from approximate self-interaction correction scheme

    Full text link
    The approximate atomic self-interaction corrections (ASIC) method to density functional theory is put to the test by calculating the exchange interaction for a number of prototypical materials, critical to local exchange and correlation functionals. ASIC total energy calculations are mapped onto an Heisenberg pair-wise interaction and the exchange constants J are compared to those obtained with other methods. In general the ASIC scheme drastically improves the bandstructure, which for almost all the cases investigated resemble closely available photo-emission data. In contrast the results for the exchange parameters are less satisfactory. Although ASIC performs reasonably well for systems where the magnetism originates from half-filled bands, it suffers from similar problems than those of LDA for other situations. In particular the exchange constants are still overestimated. This reflects a subtle interplay between exchange and correlation energy, not captured by the ASIC.Comment: 10 page

    Assembly and analysis of fragmentation data for liquid propellant vessels

    Get PDF
    Fragmentation data was assembled and analyzed for exploding liquid propellant vessels. These data were to be retrieved from reports of tests and accidents, including measurements or estimates of blast yield, etc. A significant amount of data was retrieved from a series of tests conducted for measurement of blast and fireball effects of liquid propellant explosions (Project PYRO), a few well-documented accident reports, and a series of tests to determine auto-ignition properties of mixing liquid propellants. The data were reduced and fitted to various statistical functions. Comparisons were made with methods of prediction for blast yield, initial fragment velocities, and fragment range. Reasonably good correlation was achieved. Methods presented in the report allow prediction of fragment patterns, given type and quantity of propellant, type of accident, and time of propellant mixing

    Voltage-Controlled Surface Magnetization of Itinerant Ferromagnet Ni_(1-x)Cu_x

    Full text link
    We argue that surface magnetization of a metallic ferromagnet can be turned on and off isothermally by an applied voltage. For this, the material's electron subsystem must be close enough to the boundary between para- and ferromagnetic regions on the electron density scale. For the 3d series, the boundary is between Ni and Cu, which makes their alloy a primary candidate. Using Ginzburg-Landau functional, which we build from Ni_(1-x)Cu_x empirical properties, ab-initio parameters of Ni and Cu, and orbital-free LSDA, we show that the proposed effect is experimentally observable.Comment: 4 pages; 2 figures; submitted to PRL February 16th 2008; transferred to PRB June 21st 2008; published July 15th 200

    Toward transferable interatomic van der Waals interactions without electrons: The role of multipole electrostatics and many-body dispersion

    Get PDF
    We estimate polarizabilities of atoms in molecules without electron density, using a Voronoi tesselation approach instead of conventional density partitioning schemes. The resulting atomic dispersion coefficients are calculated, as well as many-body dispersion effects on intermolecular potential energies. We also estimate contributions from multipole electrostatics and compare them to dispersion. We assess the performance of the resulting intermolecular interaction model from dispersion and electrostatics for more than 1,300 neutral and charged, small organic molecular dimers. Applications to water clusters, the benzene crystal, the anti-cancer drug ellipticine---intercalated between two Watson-Crick DNA base pairs, as well as six macro-molecular host-guest complexes highlight the potential of this method and help to identify points of future improvement. The mean absolute error made by the combination of static electrostatics with many-body dispersion reduces at larger distances, while it plateaus for two-body dispersion, in conflict with the common assumption that the simple 1/R61/R^6 correction will yield proper dissociative tails. Overall, the method achieves an accuracy well within conventional molecular force fields while exhibiting a simple parametrization protocol.Comment: 13 pages, 8 figure

    Hooke's law correlation in two-electron systems

    Full text link
    We study the properties of the Hooke's law correlation energy (\Ec), defined as the correlation energy when two electrons interact {\em via} a harmonic potential in a DD-dimensional space. More precisely, we investigate the 1S^1S ground state properties of two model systems: the Moshinsky atom (in which the electrons move in a quadratic potential) and the spherium model (in which they move on the surface of a sphere). A comparison with their Coulombic counterparts is made, which highlights the main differences of the \Ec in both the weakly and strongly correlated limits. Moreover, we show that the Schr\"odinger equation of the spherium model is exactly solvable for two values of the dimension (D=1and3D = 1 \text{and} 3), and that the exact wave function is based on Mathieu functions.Comment: 7 pages, 5 figure

    Density-density functionals and effective potentials in many-body electronic structure calculations

    Full text link
    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.Comment: five figure
    • …
    corecore