We estimate polarizabilities of atoms in molecules without electron density,
using a Voronoi tesselation approach instead of conventional density
partitioning schemes. The resulting atomic dispersion coefficients are
calculated, as well as many-body dispersion effects on intermolecular potential
energies. We also estimate contributions from multipole electrostatics and
compare them to dispersion. We assess the performance of the resulting
intermolecular interaction model from dispersion and electrostatics for more
than 1,300 neutral and charged, small organic molecular dimers. Applications to
water clusters, the benzene crystal, the anti-cancer drug
ellipticine---intercalated between two Watson-Crick DNA base pairs, as well as
six macro-molecular host-guest complexes highlight the potential of this method
and help to identify points of future improvement. The mean absolute error made
by the combination of static electrostatics with many-body dispersion reduces
at larger distances, while it plateaus for two-body dispersion, in conflict
with the common assumption that the simple 1/R6 correction will yield proper
dissociative tails. Overall, the method achieves an accuracy well within
conventional molecular force fields while exhibiting a simple parametrization
protocol.Comment: 13 pages, 8 figure