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Density matrix embedding theory [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404
(2012)] and density embedding theory [I. W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev.
B 89, 035140 (2014)] have recently been introduced for model lattice Hamiltonians and molecu-
lar systems. In the present work, the formalism is extended to the ab initio description of infinite
systems. An appropriate definition of the impurity Hamiltonian for such systems is presented and
demonstrated in cases of 1, 2, and 3 dimensions, using coupled cluster theory as the impurity solver.
Additionally, we discuss the challenges related to disentanglement of fragment and bath states. The
current approach yields results comparable to coupled cluster calculations of infinite systems even
when using a single unit cell as the fragment. The theory is formulated in the basis of Wannier
functions but it does not require separate localization of unoccupied bands. The embedding scheme
presented here is a promising way of employing highly accurate electronic structure methods for
extended systems at a fraction of their original computational cost. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891861]

I. INTRODUCTION

Electron correlation plays a crucial role in understand-
ing most physical phenomena in molecules and extended sys-
tems. While highly accurate many-body approaches can be
nowadays routinely employed in molecular systems, solid
state applications remains dominated by density functional
theory (DFT). Despite the undeniable success of DFT in ex-
tended systems,1–3 there are significant limitations appear-
ing from the approximate form of the exchange-correlation
functional4 and much work remains to be done in order to
ensure systematically improvable predictions.5–14 An alterna-
tive route for incorporating electron correlations is to employ
wavefunction-based methods. Recently, significant progress
in applying such many-body theories for solid state problems
has been made.15–19

Size-extensive, wavefunction-based approaches to solids
treat the system as a whole, imposing translational symme-
try and Brillouin zone integration. Finite order perturbation
theory20–28 and coupled cluster (CC) methods29–32 have been
formulated and implemented for infinite systems. Alterna-
tively, the numerical complexity associated with numerous
electronic degrees of freedom in solids has been simplified,
for example, by means of the method of increments.33–37

In the present work, electron correlation in extended sys-
tems is accounted for via an embedding approach. The infi-
nite periodic problem is transformed into one of a small frag-
ment (unit cell) entangled with an effective bath. In order to
define the bath, we employ the recently introduced density
embedding theory (DET),38 which is a simplification of den-
sity matrix embedding theory (DMET),39, 40 where a different
convergence criterion is applied.41 Here, an approximate so-
lution to the infinite periodic system, typically Hartree-Fock,
is used to construct two basis sets. The first basis is associated

with a small part of the lattice (fragment) whereas the second
is used to describe the excluded complement (bath). Subse-
quently, one solves the many-body problem for the fragment
plus bath, a so-called impurity problem. In this way, corre-
lations between the fragment and the rest of the system are
represented by a many-electron environment, not a single-
particle potential.40 The Hartree-Fock (HF) choice for an ap-
proximate solution of the infinite solid affords the desired
bases in a trivial algebraic manner via diagonalization. More-
over, the resulting Hamiltonian describing the fragment-bath
interaction is defined in a much smaller single-particle Hilbert
space as compared to the full lattice Hamiltonian. Thus, this
construction opens the possibility of employing highly accu-
rate many-body techniques to tackle extended systems.

Indeed, DMET and DET with exact diagonali-
zation38–40, 42 and density matrix renormalization group43 as
impurity solvers have been shown to provide high-quality
descriptions of model Hamiltonians and molecular systems.
In the present work we extend the applicability of this novel
approximation to realistic extended systems. Such problems
seem a promising niche for this embedding scheme. The
definition of fragment is naturally dictated by the periodicity
of the system which greatly simplifies the procedure. We
propose a way of defining the local Hamiltonian that guar-
antees exactness of mean-field in mean-field embedding and
facilitates coping with the Coulomb problem in solids. Addi-
tionally, we discuss practical issues related to preparing the
fragment and bath basis for an infinite number of electrons
and the problem of disentangled states.

While in the current work we benchmark the DET
scheme by describing the fragment-bath interaction at the
coupled cluster level of theory, we stress that the methodology
is flexible enough to accommodate any correlated wavefunc-
tion method. Indeed, the purpose of DET is to provide a finite,
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small dimension effective Hamiltonian which should account
for locally important degrees of freedom. Then, any many-
body technique may be employed to solve the impurity prob-
lem at hand. In particular, very accurate and computationally
affordable schemes44, 45 may be used to study extended sys-
tems with realistic unit cell sizes.

II. THEORY AND FORMALISM

In order to keep this paper self-contained, we present in
this section a basic introduction to density matrix and density
embedding theories. More details can be found in the origi-
nal papers.38–40, 42, 43 Subsequently, we discuss the changes re-
quired to apply the formalism to the ab initio Hamiltonian of
extended systems. This includes the Schmidt decomposition
of Slater determinants for infinite systems and the formula-
tion of an impurity Hamiltonian that allows us to deal with
the Coulomb divergence in solids. Unless otherwise speci-
fied, single-particle indices denote both spin and spatial co-
ordinates. In the context of periodic systems, cell coordinates
are implicitly included except when confusion may arise.

A. Mean-field based embedding theories

Density matrix embedding theory and its simplification,
density embedding theory, are projections of the exact Hamil-
tonian onto a basis obtained by Schmidt decomposition of the
ground state wavefunction |�〉. To be precise, one may cast
|�〉 into39

|�〉 =
∑

i

λi |αi〉|βi〉, (1)

where |α〉 represents the part of the system of interest, the
fragment, whereas |β〉 represents the rest of the system, the
bath. With such states at hand, an impurity Hamiltonian is
defined,

Ĥimp =
∑
ijkl

|αi〉|βj 〉〈αi |〈βj |Ĥ |αk〉|βl〉〈αk|〈βl|, (2)

which has the same ground state as the exact Hamiltonian.39

The fragment and bath basis states are, in principle, many-
electron states.

In order to make calculations practical, DMET and DET
replace the exact ground state with a mean-field approxima-
tion, i.e., |�〉 is replaced with |�〉 = �pa

†
p|0〉, where a

†
p cre-

ates a hole state |φp〉 and |0〉 is the bare vacuum. The hole
creation operators are obtained from a mean-field approxima-
tion, here the Hartree-Fock transformation D of bare fermion
operators c†:

a
†
p =

∑
μ

Dμpc
†
μ. (3)

The mean-field solution is obtained for the Hamiltonian of
interest augmented with an effective one-body potential v,

Ĥ =
∑
μν

hμνc
†
μcν + 1

4

∑
μνλσ

Vμνλσ c
†
μc

†
νcσ cλ +

∑
μν

vμνc
†
μcν.

(4)

The meaning of this potential will soon become apparent.

With the above approximation, the task of performing the
Schmidt decomposition of the wavefunction describing the
whole system amounts to a rather trivial algebraic problem.46

Defining single particle basis associated with a chosen sub-
system of the entire problem, |F〉, one constructs a projec-
tion operator onto the fragment P̂F = ∑

i |Fi〉〈Fi | and its
complement P̂B = Î − P̂F . The latter projects onto the bath
states. With such tools at hand, one may construct an overlap
matrix M,

Mpq = 〈φq |P̂F |φp〉, (5)

where indices p and q denote the hole states. Diagonalizing
the above overlap matrix VdV † = M yields at most min(ne,
nF) eigenvalues di different from zero where ne and nF de-
note the number of electrons in the system and the number
of single-particle states associated with the fragment, respec-
tively. The eigenvectors corresponding to such eigenvalues
are then normalized to construct fragment (|f 〉) and bath (|b〉)
states

|fi〉 =
∑

p

V �
pi√
di

P̂F |φp〉
(6)

|bi〉 =
∑

p

V �
pi√

1 − di

P̂B |φp〉.

The states that correspond to zero eigenvalue are called cores
and are discarded from consideration in the impurity problem.

In practical applications, one would like to retain all the
fragment states. This requires special care when the eigenval-
ues d are close to 1 or 0. Such complications are addressed
in Subsection A 2 of the Appendix. Right now, let us stress
the consequences of the above approximation which is a key
step in the present work. The most prominent result is that
the Schmidt decomposition yields single-particle bases that
can be further employed in the construction of the impurity
Hamiltonian. This fact greatly facilitates computations. Addi-
tionally, the number of entangled states (or equivalently the
number of non-zero eigenvalues d) is defined by the fragment
single-particle basis. If one chooses the fragment to be small,
accurate many-body techniques can be applied to solve the
impurity problem, which we now proceed to introduce.

Let us define creation operators in the impurity basis: f†,
b†, and e†; f† and b† are associated with fragment and bath
states, respectively. We will use e† for general states which
can be either fragment or bath. The impurity problem is de-
fined by the Hamiltonian,

Ĥimp =
∑
ee′

h̃ee′e
†e′ + 1

4

∑
ee′e′′e′′′

Ṽee′e′′e′′′e
†e′†e′′′e′′

+
∑
bb′

ṽbb′b
†b′, (7)

where h̃ and Ṽ are one- and (antisymmetrized) two-body
terms of the Hamiltonian projected onto the embedding basis.
The additional potential ṽ, acting only in the bath subspace of
the impurity, is introduced to enforce a suitable chosen con-
vergence criterion. In the present work, we make a diagonal
ansatz for the effective potential (ṽij = vδij hence vμν = vδμν

in Eq. (4)), which corresponds to a chemical potential in the
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bath. We find such a potential by requiring the proper number
of electrons in the fragment, on average. Let us stress that,
for periodic systems, the average number of electrons per unit
cell is known and well defined.

The other possible choices of self-consistency conditions
include fitting of the fragment-fragment block or the full one-
particle density matrix of the underlying mean-field solution
and the correlated one. Such conditions are combined with
the full v matrix. The reader is referred to Ref. 38 for broader
discussion of such alternative self-consistency conditions. As
the present work aims to outline the formalism of DMET
as applied to ab initio periodic Hamiltonians, the detailed
study of other possible form of v are not included here. One
should note, however, that the current self-consistency choice
does not allow the underlying mean-field to be affected dur-
ing the DMET procedure. Despite facilitating convergence of
the DMET procedure, the present choice of the fitting proce-
dure should be considered as less flexible than the others. The
agreement between the mean-field and the correlated one-
particle density matrices cannot be exact unless no correla-
tions are present in the system studied or equivalently, one
uses an uncorrelated impurity solver. An explanation for this
statement is presented in Sec. II C.

At this point, let us make a few remarks concerning the
meaning of the impurity Hamiltonian. Assuming that M con-
tains nF eigenvalues different from 1 or 0, this Hamiltonian
describes a system of nF particles in 2nF spin orbitals. Solv-
ing the Hamiltonian in the Hilbert space of the impurity corre-
sponds to a Fock space calculation in the fragment subspace.
The bath can be considered as an entangled reservoir of elec-
trons or holes.

Having solved the impurity Hamiltonian, the energy den-
sity (energy per fragment) is subsequently computed as

E =
∑
f e

h̃f eγef + 1

4

∑
f ee′e′′

Ṽf ee′e′′�e′e′′f e, (8)

with γee′ = 〈e′†e〉 and �e′′e′′′ee′ = 〈e†e′†e′′′e′′〉 being one- and
two-particle density matrices of the impurity wavefunction.
Again, index f (e) denotes fragment (fragment and bath)
single-particle states. The expression above corresponds to
partitioning the energy of the impurity Hamiltonian into frag-
ment and bath contributions (the latter can be obtained by re-
placing f with b in the above equation). As the reader may
note, this energy expression also accounts for fragment-bath
interactions via one- and two-body Hamiltonian matrix ele-
ments. An analogous formulation has been presented in the
original DMET literature.39, 40

As a final remark, let us note that the energy computed
according to the above expression is not an expectation value
of the true Hamiltonian with an N-particle wavefunction. It is
therefore not an upper bound of the true ground state energy.

B. Schmidt decomposition for periodic systems

Density embedding calculations on a truly infinite system
require a suitable single-particle basis associated with a frag-
ment. In the present work, we employ the maximally localized
Wannier functions47–50 obtained by localization of canonical

mean-field crystalline orbitals. In other words, we form a uni-
tary transformation of mean-field basis |ψn�k〉, where �k labels
irreducible representations of the translational group51, 52 and
n is a band index. This yields an orthonormal set |Fi �G〉, where
i labels a basis in given cell �G. The orthonormality condition
reads47

〈Fi �G|Fj �G′ 〉 = δij δ �G �G′ . (9)

A few comments are called for at this point. First, during
the localization process, we must allow for mixing of hole and
particle states. Therefore, there is no need for localizing the
particle (unoccupied) orbitals by themselves. In our numer-
ical approach, we did not encounter serious difficulties con-
verging the Wannier basis required by the present formalism.
Second, as we explain in more detail in Subsection A 1 of the
Appendix, one may desire to truncate the space treated in the
impurity Hamiltonian only to levels around the Fermi energy.
This is accomplished simply by choosing a subset of energy
bands for the localization. In other words, only a limited set
of the highest valence bands and the lowest conduction bands
may be employed while forming |Fi �G〉 bases. As the num-
ber of bands used during the localization process is equal to
the number of fragment states per unit cell, a suitable trunca-
tion criterion may be used to further limit the single-particle
Hilbert space of the impurity Hamiltonian without sacrificing
relevant physics.

Analogously, one needs to perform the localization of the
hole states, yielding |φp �G〉, which constitutes the pth hole

state associated with cell �G. Whenever a truncation of the
conduction band occurs while forming the fragment states,
the same truncation should be done during the formation of
the hole states.

Now, one is in a position to compute the overlap matrix
of Eq. (5),

M
�G �G′
pq = 〈φq �G′ |P̂F |φp �G〉 =

∑
i

〈φq �G′ |Fi�0〉〈Fi�0|φp �G〉, (10)

needed to define the fragment and bath states of the impurity
basis. In the above formula, the summation over the fragment
states is limited to the reference cell �0. If embedding of more
than one cell is needed, the summation over the entire em-
bedded cluster must be performed. With the aid of the above
matrix, fragment and bath states are formed according to
Eq. (6) keeping in mind that index p in those equations in-
cludes a cell coordinate.

At this point we would like to note that the localization
of the hole states and the local nature of the fragment single-
particle basis allows for effective truncation of the formally
infinite summation over the entire crystal. Indeed, one may
limit the summation over cells when 〈Fi�0|φp �G〉 → 0 as | �G|
increases. The localization of the hole states therefore dic-
tates a natural length scale one has to consider during DET
calculations.

C. Definition of the impurity Hamiltonian

Having established a formalism for constructing the em-
bedding basis, let us turn our attention to the definition
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of the impurity Hamiltonian. A Hamiltonian for a realistic
crystalline material can be written as

Ĥ = ENN + V̂Ne + V̂ee + T̂ = H0 + ĥ + V̂ , (11)

where ENN is the nuclear repulsion energy, V̂Ne and V̂ee are
the electrostatic electron-nucleus and electron-electron inter-
actions, respectively; T̂ is the kinetic energy operator. Those
terms can be then arranged into constant (H0) and one- and
two-body Hamiltonians (ĥ and V̂ , respectively). As described
in the literature,51, 53–55 the summation of an infinite number
of electrostatic terms has to be handled with care in order
to avoid divergences and loss of accuracy. Analogous prob-
lems may arise while projecting the Hamiltonian onto the em-
bedding basis. In order to deal with such complications, we
propose to first recast the Hamiltonian into second-quantized
form with the aid of the mean-field Fock matrix

Fμν = hμν +
∑
λσ

Vμλνσ γσλ, (12)

as

Ĥ = E0 −
∑
μν

Fμνγνμ + 1

2

∑
μνλσ

Vμλνσ γσλγνμ

+
∑
μν

(Fμν − Vμλνσ γσλ)c†νcν + 1

4

∑
μνλσ

Vμνλσ c
†
μc

†
νcσ cλ.

(13)

In the expression above, E0 = EN where E is the mean-field
energy per unit cell and N is the number of cells. Again,
the individual terms in the summation are not necessarily
convergent. For example, the constant 1

2

∑
μνλσ Vμλνσ γσλγνμ

describing the electron-electron interaction energy is diver-
gent and has no meaningful thermodynamic limit, if evalu-
ated separately. Similarly,

∑
λσ Vμλνσ γσλ, which contributes

to the one-body Hamiltonian above, gives rise to divergent
matrix elements. For these reasons, we propose to express all
quantities in the embedding basis, before the summation is
performed. In other words, we separately project the mean-
field potential, the density matrix and the two-body interac-
tion onto the embedding basis, i.e., Fμν → F̃ee′ , γμν → γ̃ee′ ,
and Vμνλσ → Ṽee′e′′e′′′ . While the two-body interaction is pro-
jected without any modifications, let us explicitly write the
one-body part of the impurity Hamiltonian, h̃, and the con-
stant term, Ẽ0,

h̃ee′ = F̃ee′ −
∑
e′′e′′′

Ṽee′′e′e′′′ γ̃e′′′e′′ , (14)

Ẽ0 = ENF −
∑
f e

(
F̃f e − 1

2

∑
e′e′′

Ṽf e′ee′′ γ̃e′′e′

)
γ̃ef , (15)

where again, E denotes the mean-field energy per unit cell,
whereas NF is the number of unit cells in the fragment. As
the reader may readily notice, the summation restriction to
the fragment basis only has been imposed on the constant
term above. The reason for such truncation shall become clear
soon.

The construction above constitutes an approximate way
of projecting the Hamiltonian. Let us therefore discuss the

physical motivation behind it. As shown in Ref. 38 and ex-
panded upon in the Appendix below, the mean-field one-
particle density matrix and mean-field Fock matrix commute
with each other after projection onto the embedding basis,
i.e., [γ̃ , F̃ ] = 0. Moreover, γ̃ is idempotent. Inserting γ̃ as
an initial guess for the impurity Hamiltonian as defined above
yields a Fock matrix that is equal to the Fock matrix of the
whole system projected onto the embedding basis

F
imp
ee′ = h̃ee′ +

∑
e′′e′′′

Ṽee′′e′e′′′ γ̃e′′′e′′ = F̃ee′ . (16)

The mean-field solution of the impurity problem is therefore
the crystal density matrix in the embedding basis. Further-
more, computing the energy according to Eq. (8) (with a con-
stant term defined by Eq. (15) reveals that the mean-field en-
ergy of the fragment is just the energy per unit cell multiplied
by the number of cells taken as fragment constituents. In the
above, we have set the effective potential, present in Eq. (4)
to zero. We conclude that the current definition of the impu-
rity problem ensures exactness of mean-field in mean-field
embedding. Furthermore, the solution corresponds to a van-
ishing effective potential v. We would like to stress that the
exactness of the mean-field in mean-field embedding has been
numerically demonstrated for DMET in Ref. 40.

Finally, let us note that for nontrivial calculations, that is
when a correlated theory is used as an impurity solver, the
effective potential has to be optimized and included in the im-
purity Hamiltonian as well as the full crystal Hamiltonian. In
the present work, the diagonal ansatz for the effective poten-
tial allows us to eliminate these terms from the mean-field
Fock matrix of the crystal as they cannot change the mean-
field solution. Therefore, the construction of the embedding
basis and the impurity Hamiltonian is performed only once
during the calculation. The value of the effective potential is
determined in the embedding basis only.

III. COMPUTATIONAL DETAILS

The construction of Wannier functions has been imple-
mented in the Gaussian Development Version56 that has also
been used to perform the periodic Hartree-Fock calculations.
The crystalline orbital localization has been performed by
adapting the scheme the of Ref. 50, where the Boys local-
ization is replaced by the Pipek-Mezey localization49 with
the Löwdin population.48 For 1D systems, we have used a
�k-point mesh of at least 400 points; for 2D and 3D, 4000 and
70 000 �k-points have been used, respectively. The hermitized
density matrices for coupled cluster with double (CCD) and
single and double (CCSD) excitations were obtained using the
linear response formalism.57, 58

Because of numerical issues related to linear dependen-
cies in the basis, the most diffuse functions of the 6-31G
basis59, 60 were changed to 0.35, 0.30, and 0.20 for the car-
bon, nitrogen, and boron atoms, respectively.

In all calculations, eigenvalue thresholds of the Schmidt
decomposition for retaining the bath states was set to 10−6.
The fragment states corresponding to eigenvalues that were
closer to 0 or 1 than this threshold were constructed according
to the formalism outlined in Subsection A 2 of the Appendix.
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The number of cells used in the Schmidt decomposition
has been decided by a commutation criterion between mean-
field Fock and density matrices after projection onto the em-
bedding basis,

∑
ee′ |(F̃ γ̃ )ee′ − (γ̃ F̃ )ee′ |. The values of this

norm are reported for the calculations in Sec. IV.

IV. RESULTS AND DISCUSSION

A. 1D carbon systems

In this section, we asses the performance of DET
on three carbon polymers, polyyne (C≡C)∞, polyacetylene
(CH=CH)∞, and polyethylene (CH2−CH2)∞. In the present
work, we adopt the geometries from Ref. 31. The geomet-
rical parameters are rC≡C = 1.263 Å, rC–C = 1.320 Å for
polyyne, rC=C = 1.369 Å, rC–C = 1.426 Å, rC–H = 1.091 Å,
	

C=C−C = 124.5◦, 	
C=C−H = 118.3◦ for polyacetylene, and

rC–C = 1.534 Å, rC–H = 1.100 Å, 	
C−C−C = 113.7◦, 	

H−C−H
= 106.1◦ for polyethylene. In order to gain better insight
into the performance of the DET approximation, we have
additionally deformed the above systems by keeping all
variables, apart from the carbon-carbon bonds, fixed, while
scaling the carbon-carbon bonds uniformly with a parameter
α. In all calculations, the 1s orbitals of carbon were elimi-
nated from consideration in DET and coupled cluster calcula-
tions. DET(n) denotes calculations with n unit cells used as a
fragment.

Let us begin the discussion with the most challenging
system for the embedding calculation, polyyne. In this case,
one expects that the correlation energy contribution to the unit
cell would have the slowest decay.31 The results are shown in
Figs. 1 and 2. The extrapolated CCD and CCSD results were
obtained according to

EExtr(n) = EHF + Ecorr(n) − Ecorr(n − 1), (17)
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FIG. 1. Energy per unit cell profile for polyyne (C≡C)∞ with respect to uni-
form deformation (see text for details) with STO-3G basis. The results of
DET(1) and DET(2) with CCSD (left panel) and CCD (right panel) as impu-
rity solver calculations are compared to CCSD (left panel) and CCD (right
panel) oligomeric extrapolation (Extr) and Hartree-Fock (HF). For clarity the
difference between DET and extrapolated data is displayed in the bottom
panel.
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FIG. 2. Same as Fig. 1 with 6-31G basis.

where EHF is HF energy per unit cell of infinite system and
Ecorr(n) is the correlation energy of the n-unit oligomer with
a hydrogen atom as the terminal group. For the case of STO-
3G basis, extrapolations for n = 8 and n = 7 differ by no
more than 0.1 mEh; in the case of the 6-31G basis, we have
used n = 9 which differs from n = 8 by at most 0.2 mEh. We
deem these results sufficiently converged for the purpose of
the presented figures. Our extrapolated CCSD correlation en-
ergy value for the STO-3G basis and α = 1, of −155.45 mEh
agrees well with −155.53 mEh reported in Ref. 31. In the
DET calculations, the number of cells used for the Schmidt
decomposition guaranteed that the norm of the commutator
of full-system Fock and density matrices projected onto the
embedding basis to be at most 3 × 10−6.

As is clear from Fig. 1, the DET calculations with a single
unit cell chosen as a fragment agree well with the extrapolated
thermodynamic limit values both for CCSD and CCD as the
impurity solver. The maximum discrepancy is below 10 mEh;
this translates to an energy difference on the level of 5%. In-
vestigating the shape of the energy profile as a function of the
uniform stretching parameter α, we find the overall agreement
satisfactory. The inclusion of electron correlation clearly fa-
vors a more stretched configuration. Apparently, DET calcu-
lations appropriately capture this trend. One may also notice
that including two unit cells as the fragment yields results that
are closer to the extrapolated CCSD and CCD results.

Increasing the size of the basis set to 6-31G does not lead
to a deterioration of the DET results. As is clear from Fig. 2,
the single-cell DET calculations are again in good agreement
with the extrapolated values. The absolute difference does in-
crease slightly but so does the correlation energy. The overall
shape of the energy profile is well reproduced by DET. The
bonds elongation caused by correlation is well captured.

Let us comment on the size of the impurity problem for
polyyne. In the case of the STO-3G basis, there are 8 frag-
ment and 8 bath orbitals for the single cell case, with the
impurity bearing 16 electrons. This illustrates how effective
the present embedding scheme is in truncating the size of the
single-particle Hilbert space of the problem.

The next polymeric system under investigation is poly-
acetylene. For this example, the extrapolated CCSD and CCD
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FIG. 3. Same as Fig. 1 for polyacetylene.

correlation energy from 8 and 7 cells differed by less than
0.1 mEh for both STO-3G and 6-31G bases. The value of Ecorr
for CCSD with α = 1, −146.4 mEh, coincides with the one
reported in Ref. 31. The number of cells used in the Schmidt
decomposition guaranteed that the norm of the commutator
between the mean-field density and Fock matrices in the em-
bedding basis is below 10−6.

Analogously to polyyne, one notices in Figs. 3 and 4 that
correlation favors a more elongated carbon-carbon bond. Both
DET and extrapolated oligomeric results agree quantitatively.
For the STO-3G basis, even the DET(1) calculation yields re-
sults within 4 mEh from extrapolated values, a result that is
greatly improved by enlarging the embedded fragment to two
cells. Regardless, the DET approximation with both CCD and
CCSD as impurity solvers yield results that are rather paral-
lel to the thermodynamic limit ones. With the increased size
of the basis set, the agreement remains satisfactory. Though
the curvature of the energy profile obtained with DET(1) de-
viates slightly from the extrapolated data, especially for con-
tracted systems (α ≤ 0.95), the difference is not large. Again,
one has to keep in mind that DET calculations are done em-
ploying a significantly truncated single-particle basis. For the
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FIG. 4. Same as Fig. 1 for polyacetylene with the 6-31G basis.
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STO-3G basis, the impurity problem with single cell models
the infinite system with a Hamiltonian that describes merely
20 electrons in 20 orbitals (10 fragment and 10 bath states).

The last 1D polymer studied is polyethylene. Just as in
the case of polyacetylene, the difference between the extrapo-
lated CCD and CCSD energy using 8 and 7 cells was well
below 0.1 mEh. For STO-3G and α = 1, our extrapolated
CCSD correlation energy per unit cell, −135.7 mEh, coin-
cides with the value reported by Hirata et al.31 The number of
cells included in the Schmidt decomposition guaranteed that
the norm of the commutator between the mean-field Fock and
density matrices is below 10−6 after projection onto embed-
ding basis.

For polyethylene, the STO-3G DET(1) results (Fig. 5)
coincide very well with the extrapolated oligomeric data. The
small difference is almost constant over the studied values
of the α stretching parameter. Increasing the embedded frag-
ment to two cells brings the discrepancy almost to zero. With
the bigger basis, 6-31G, once again we observe very good
overall agreement between DET and extrapolated data (see
Fig. 6). The maximum difference occurs for the more con-
tracted geometry. Just as in all previous systems, one observes
stabilization of a more elongated structure due to correlation
effects. Again, let us stress that, within the DET approxima-
tion, modeling the infinite system with an impurity problem
of 24 electrons in 24 orbitals (12 fragment states and 12 bath
states), for the example of DET(1) STO-3G calculations, al-
lows one to obtain a high degree of agreement with the full
periodic CCD and CCSD calculations. One should however
keep in mind, that the physical interpretation of the impurity
problem differs from the true Hamiltonian. In the former, the
CC(S)D method is used to effectively perform a Fock space
calculation in the unit cell with the aid of an entangled bath.
On the other hand, for the full Hamiltonian one considers ex-
citations of the electrons of the entire periodic system.

B. 2D and 3D: Boron nitride and diamond

In this section, we proceed to investigate prototypical 2D
and 3D systems. The 2D structure was obtained assuming
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infinitely separated boron nitride sheets of hexagonal BN61, 62

yielding a graphene-like honeycomb lattice. We performed a
single unit embedding with CCSD and CCD as an impurity
solver. The number of cells included in the Schmidt decom-
position was chosen to provide the norm of the commutator
of the mean-field and Fock matrices in the embedding basis
below 10−6. The two lowest bands were excluded from con-
sideration, which corresponds to freezing 1s orbitals of boron
and nitrogen in the CC calculations.

In Fig. 7, we present the dependence of the energy per
unit cell with respect to the translation vector defining the un-
derlying honeycomb lattice. As the reader may readily no-
tice, our DET calculations predict noticeable impact from the
inclusion of the single excitation in the CC impurity solver.
For both, the STO-3G and 6-31G bases, the CCSD energy
is consistently below the CCD energy by about 10–20 mEh.
Nonetheless, the shape of the curves around the equilibrium
point are rather similar. The impact of the electron correla-
tion clearly shifts the position of the optimal structure towards
longer translation vectors as compared to mean-field calcula-
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FIG. 7. Energy per unit cell as a function of lattice parameter of honeycomb
boron nitride lattice. The DET(1) calculations with CCSD and CCD as im-
purity solvers are compared with HF for STO-3G (left) and 6-31G (right).
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tions. We also note that the lattice constant obtained with sin-
gle cell DET embedding is larger than that reported one for
the hexagonal BN.61, 63 Whether this elongation is due to the
inclusion of only a single sheet, lack of solid substrate or the
deficiency of the employed basis set is beyond the scope of
the present work. However, we would like to stress the key
point of current work. Namely, the size of the Hilbert space
of the impurity Hamiltonian is small and independent of the
dimensionality of the problem. The calculations for the sin-
gle cell with STO-3G basis required a correlated treatment
of 16 electrons in 16 orbitals while the 6-31G basis required
32 electrons in 32 orbitals.

As a model 3D system, we have selected diamond. The
single cell embedding with the STO-3G basis is shown in
Fig. 8. While in this example, the norm of the commutator
of Fock and density matrices in the embedding basis is on
the level of 3 × 10−5, we have verified that even with larger
real space truncation, the DET correlation energy is stable to
0.1 mEh. As the reader may notice, CCD- and CCSD-based
DET calculations provide very similar descriptions. The equi-
librium geometry occurs for longer translational vector as
compared to Hartree-Fock calculations. We do not attempt a
quantitative discussion of the data presented, which would re-
quire larger bases. However, we point out that the size of the
impurity problem involves 16 electrons in 16 orbitals (1s or-
bitals were removed from the impurity). We believe that this
illustrates the key point of the current work: the dimension of
the impurity Hamiltonian is independent of the dimensional-
ity of the lattice.

V. CONCLUSIONS

In the present work, we have reported the first applica-
tion of density embedding theory for realistic periodic sys-
tems. We have proposed a practical way of defining the impu-
rity problem and an extension of the Schmidt decomposition
to infinite systems. Practical aspects of calculation, including
the problem of disentangled bath states has been outlined and
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assessed. We believe that this point is important for extending
DET calculations to larger basis sets and bigger fragments.

Our proposed formalism for realistic Hamiltonians has
been quantitatively assessed for several periodic systems with
the aid of coupled cluster theory as an impurity solver. The
data presented shows good agreement between the coupled
cluster DET calculations and the coupled cluster thermody-
namic limit, even when using a single cell as fragment. While
more extended benchmarks are certainly called for, the cur-
rent tests are a promising starting point. Indeed, employing
more sophisticated many-body techniques to tackle the im-
purity problem is an interesting option especially as the size
of the impurity Hamiltonian does not depend on the dimen-
sionality of the lattice. Furthermore, as the impurity problem
in DMET and DET is always finite, application of accurate
but not necessarily size-extensive tools becomes feasible.
Nonetheless, one should bear in mind that DMET and DET
provide a local, finite Hamiltonian solution which may be in-
terpreted as a Fock space calculation performed on the frag-
ment. As such, the philosophy of the calculation differs from
the Hilbert space approach to the full lattice.

While the aim of the current work focuses on the DMET
formalism of periodic ab inito systems and related numerical
challenges, a more quantitative study, employing larger basis
sets will be presented in due time. Additionally, the possibil-
ity of employing fragment basis that does not require the con-
struction of Wannier functions may further benefit the current
approximation. Similarly, forming an embedding basis that
accounts for entanglement beyond the mean-field should fur-
ther improve on the current scheme.

Despite being a relatively recent model, density matrix
embedding theory and its simplification employed here, are
accurate and computationally feasible approaches to deal with
the numerous electronic degrees of freedom of large systems.
We believe that the results presented here support confidence
in the predictive power of this approximation.
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APPENDIX: HANDLING BAND TRUNCATION
AND DISENTANGLED STATES IN DET

In this Appendix, we present a formalism for dealing with
the Schmidt decomposition of a Slater determinant for trun-
cated particle and hole states as well as cases where fragment
and bath states become disentangled. The discussion is simi-
lar to the one provided in Ref. 38 but more general.

1. Fragment states with truncated bands

Let us start by specifying the notation. In the present
work, the crystalline orbitals, both in Bloch and Wannier rep-

resentations are normalized according to

〈ψi�k|ψj �k′ 〉 = δij δ�k�k′

(A1)
〈φi �G|φj �G′ 〉 = δij δ �G �G′ ,

and are related by the discrete Fourier relation47

|φi �G〉 = 1√
N

∑
�k

e−i�k· �G ∑
j

U
�k
ji |ψj �k〉, (A2)

where N is the number of unit cells. The idempotent density
matrix can then be expressed as

γ̂ =
∑
p�k

|ψp�k〉〈ψp�k| =
∑
p �G

|φp �G〉〈φp �G| =
∑
p′

|φp′ 〉〈φp′ |,

(A3)

where in the second term, index p denotes hole states at
given �k or labeled by cell index �G, whereas in the last term
p′ = (p �G) denotes all particle states in all cells.

The orthonormal single-particle basis |Fi �G〉 becomes

|Fi �G〉 = 1√
N

∑
�k

e−i�k· �G ∑
j

U
�k
ji |ψj �k〉, (A4)

with index j running over the chosen subset of bands. Be-
cause the states Fi �G are orthogonal to Wannier functions ob-
tained by unitary transformation of Bloch functions within
the complementary subset of bands, such states have zero
overlap with |Fi �G〉. Therefore, for the sake of argument, one
may include these in the definition of the overlap matrix M
(Eq. (10)). Such states will simply have vanishing amplitude
in eigenvectors corresponding to non-zero eigenvalue. There-
fore, in the rest of this Appendix, the summations over the
indices p and q in Eq. (10) are formally done over the whole
valence band. One just has to impose proper block-diagonal
structure of U �k while preparing states |φp �G〉. It now follows
directly that the one-particle density matrix in the embedding
basis has the blocked structure

γ̃ =
(

γ FF γ FB

γ BF γ BB

)
=

(
d

√
d(1 − d)

√
d(1 − d) 1 − d

)
, (A5)

where d is the diagonal matrix of non-zero eigenvalues of
M. Finally, let us show the commutation relation between the
density matrix and the Fock matrix projected onto the embed-
ding basis. To do so, we define matrix t = F̃ γ̃ and show it is
Hermitian. The fragment-fragment block reads,

tFF
ij = F̃ FF

ij dj + F̃ FB
ij

√
dj (1 − dj )

=
√

didj

∑
pq

Vpi〈ψp|F̂ |ψq〉V �
qj = [

tFF
ji

]�
, (A6)

where F̂ is the crystal Fock operator. We have used the fact
that a vector F̂ |φq〉 does not contain contributions from parti-

cle states. Hence it can be written as
∑

r |φr〉〈φr |F̂ |φq〉 with
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indices q and r being the hole states. Similarly,

tBB
ij =

√
(1 − di)(1 − dj )

∑
pq

Vpi〈φp|F̂ |φq〉V �
qj = [

tBB
ji

]�

(A7)

tFB
ij =

√
di(1 − dj )

∑
pq

Vpi〈φp|F̂ |φq〉V �
qj = [

tBF
ji

]�

2. Handling disentangled states

In the following paragraphs we suggest a route for deal-
ing with the eigenvalues of M that are close to 1 or 0. As the
reader may easily note, whenever a situation like this occurs,
one may face numerical problems with the normalization of
embedding basis. The trivial solution, i.e., removing the cou-
ple of bath and fragment states that are disentangled, cannot
be easily done; one would eliminate possibly important de-
grees of freedom in the fragment.

Let us consider that there exists a set of eigenvalues d that
are close to 1. In such a case, we propose to remove the bath
state and retain a modified fragment state that takes the form

|f̃i〉 =
∑

p

V �
pi |φp〉. (A8)

Due to the unitarity of V , these states are orthonormal and
orthogonal to all other fragment and bath states. Moreover,
the density matrix in such a basis takes the form,

γ̃ =

⎛
⎜⎝

d
√

d(1 − d) 0
√

d(1 − d) 1 − d 0

0 0 1

⎞
⎟⎠, (A9)

where the last block is expressed in the basis |f̃ 〉. As is clear,
γ̃ remains idempotent. It is also straightforward to show that
the commutation relation between the one-body density ma-
trix and Fock matrix is preserved.

Let us now turn our attention to the situation when there
exists a set of eigenvalues d that are close to 0. We propose to
construct an auxiliary matrix N,

Nkl = 〈Fl|
(
I −

∑
p

|φp〉〈φp|
)

|Fk〉. (A10)

This matrix admits eigendecomposition N = UλU †. Let us
show that for every eigenvalue di of M different from 0,
N has eigenvalue 1 − di. We define a column vector U ′

ki

= ∑
q〈Fk|φq〉V �

qi with a norm
∑

k U
′�
kiU

′
ki = di . Hence it is

a non-trivial vector whenever di is not an exact zero. One may
now explicitly verify that

∑
k NlkU

′
ki = (1 − di)U

′
li .

We show that one may replace a fragment state | fi〉 with
eigenvalue close to 0, with the state

|f̄i〉 =
∑

k

U �
ki√
λi

(
I −

∑
p

|φp〉〈φp|
)

|Fk〉, (A11)

with eigenvalue λi = 1 − di and remove a bath state entan-
gled with | fi〉. Let us now demonstrate that f̄i corresponding
to eigenvalue λi is orthogonal to all fragment states | fj〉 corre-

sponding to dj not equal to 1 − λi. Namely,

〈fj |f̄i〉 = 1 − dj√
djλi

∑
kp

Vpj 〈φp|Fk〉U �
ki

= λi√
djλi

∑
kp

Vpj 〈φp|Fk〉U �
ki (A12)

must vanish whenever λi 	= 1 − dj. Similarly, for the bath
states not associated with fragment | fj〉,

〈bj |f̄i〉 = −
√

dj

1 − dj

〈fj |f̄i〉. (A13)

The orthogonality to states |f̃i〉 (Eq. (A8)) also follows.
Finally, the density matrix in the embedding basis as defined
above takes the form

γ̃ =

⎛
⎜⎜⎜⎜⎝

d
√

d(1 − d) 0 0
√

d(1 − d) 1 − d 0 0

0 0 1 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A14)

One may also verify that the product of the Fock and den-
sity matrices in the embedding basis remains Hermitian (one
again uses the fact that F̂ |φp〉 = ∑

r |φr〉〈φr |F̂ |φp〉 to show

that 〈f̄i |F̂ |φp〉 = 0).
As is clear, the density matrix above is idempotent and

traces to an integer number of particles. Therefore, it dictates
the number of electrons we include in the impurity problem.
However, as in the fragment space we replace eigenvalues that
differ from one and zero by a preset value, the total number
of particles in the fragment may deviate from the actual with
an error proportional to chosen threshold.

Let us note that in the derivation above we assumed
that eigenvalues of fragment states are arbitrarily small but
nonzero. In practical calculations, we did not encounter any
problems while forming the fragment states from eigenvec-
tors of M above the preset threshold and filling the missing
fragment states with the eigenvectors of N to complete the
set.

Finally, let us discuss the physical meaning of the dis-
entangled states. Whenever there exists a localized fragment
state that is fully spanned by occupied manifold no coupling
to the environment exists, at the mean-field level. This is man-
ifested by an eigenvalue d = 1. On the other hand, a localized
state spanned fully by the virtual manifold yields an eigen-
value d = 0 hence again, no coupling. As the coupling de-
pends on the overlap between the fragment states and the oc-
cupied manifold, in the limit of non-interacting fragments, all
the eigenvalues d are either 0 or 1. This means that no linearly
independent bath states can be formed. As a consequence, the
embedding basis in DMET is just the fragment basis and the
correlated treatment of the impurity Hamiltonian corresponds
to a correlated treatment of the fragment itself. Therefore,
with the convergence criterion employed in the present work,
the exactness for noninteracting fragments follows.
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