4,093 research outputs found

    First-principles investigation of spin polarized conductance in atomic carbon wire

    Full text link
    We analyze spin-dependent energetics and conductance for one dimensional (1D) atomic carbon wires consisting of terminal magnetic (Co) and interior nonmagnetic (C) atoms sandwiched between gold electrodes, obtained employing first-principles gradient corrected density functional theory and Landauer's formalism for conductance. Wires containing an even number of interior carbon atoms are found to be acetylenic with sigma-pi bonding patterns, while cumulene structures are seen in wires containing odd number of interior carbon atoms, as a result of strong pi-conjugation. Ground states of carbon wires containing up to 13 C atoms are found to have anti-parallel spin configurations of the two terminal Co atoms, while the 14 C wire has a parallel Co spin configuration in the ground state. The stability of the anti-ferromagnetic state in the wires is ascribed to a super-exchange effect. For the cumulenic wires this effect is constant for all wire lengths. For the acetylenic wires, the super-exchange effect diminishes as the wire length increases, going to zero for the atomic wire containing 14 carbon atoms. Conductance calculations at the zero bias limit show spin-valve behavior, with the parallel Co spin configuration state giving higher conductance than the corresponding anti-parallel state, and a non-monotonic variation of conductance with the length of the wires for both spin configurations.Comment: revtex, 6 pages, 5 figure

    Density Functional Theory for the Photoionization Dynamics of Uracil

    Full text link
    Photoionization dynamics of the RNA base Uracil is studied in the framework of Density Functional Theory (DFT). The photoionization calculations take advantage of a newly developed parallel version of a multicentric approach to the calculation of the electronic continuum spectrum which uses a set of B-spline radial basis functions and a Kohn-Sham density functional hamiltonian. Both valence and core ionizations are considered. Scattering resonances in selected single-particle ionization channels are classified by the symmetry of the resonant state and the peak energy position in the photoelectron kinetic energy scale; the present results highlight once more the site specificity of core ionization processes. We further suggest that the resonant structures previously characterized in low-energy electron collision experiments are partly shifted below threshold by the photoionization processes. A critical evaluation of the theoretical results providing a guide for future experimental work on similar biosystems

    A priori Wannier functions from modified Hartree-Fock and Kohn-Sham equations

    Full text link
    The Hartree-Fock equations are modified to directly yield Wannier functions following a proposal of Shukla et al. [Chem. Phys. Lett. 262, 213-218 (1996)]. This approach circumvents the a posteriori application of the Wannier transformation to Bloch functions. I give a novel and rigorous derivation of the relevant equations by introducing an orthogonalizing potential to ensure the orthogonality among the resulting functions. The properties of these, so-called a priori Wannier functions, are analyzed and the relation of the modified Hartree-Fock equations to the conventional, Bloch-function-based equations is elucidated. It is pointed out that the modified equations offer a different route to maximally localized Wannier functions. Their computational solution is found to involve an effort that is comparable to the effort for the solution of the conventional equations. Above all, I show how a priori Wannier functions can be obtained by a modification of the Kohn-Sham equations of density-functional theory.Comment: 7 pages, RevTeX4, revise

    Active inference on discrete state-spaces: A synthesis

    Get PDF
    Active inference is a normative principle underwriting perception, action, planning, decision-making and learning in biological or artificial agents. From its inception, its associated process theory has grown to incorporate complex generative models, enabling simulation of a wide range of complex behaviours. Due to successive developments in active inference, it is often difficult to see how its underlying principle relates to process theories and practical implementation. In this paper, we try to bridge this gap by providing a complete mathematical synthesis of active inference on discrete state-space models. This technical summary provides an overview of the theory, derives neuronal dynamics from first principles and relates this dynamics to biological processes. Furthermore, this paper provides a fundamental building block needed to understand active inference for mixed generative models; allowing continuous sensations to inform discrete representations. This paper may be used as follows: to guide research towards outstanding challenges, a practical guide on how to implement active inference to simulate experimental behaviour, or a pointer towards various in-silico neurophysiological responses that may be used to make empirical predictions

    Second-order electronic correlation effects in a one-dimensional metal

    Full text link
    The Pariser-Parr-Pople (PPP) model of a single-band one-dimensional (1D) metal is studied at the Hartree-Fock level, and by using the second-order perturbation theory of the electronic correlation. The PPP model provides an extension of the Hubbard model by properly accounting for the long-range character of the electron-electron repulsion. Both finite and infinite version of the 1D-metal model are considered within the PPP and Hubbard approximations. Calculated are the second-order electronic-correlation corrections to the total energy, and to the electronic-energy bands. Our results for the PPP model of 1D metal show qualitative similarity to the coupled-cluster results for the 3D electron-gas model. The picture of the 1D-metal model that emerges from the present study provides a support for the hypothesis that the normal metallic state of the 1D metal is different from the ground state.Comment: 21 pages, 16 figures; v2: small correction in title, added 3 references, extended and reformulated a few paragraphs (detailed information at the end of .tex file); added color to figure

    Agricultural expansion in African savannas: effects on diversity and composition of trees and mammals

    Get PDF
    AbstractLand use change (LUC) is the leading cause of biodiversity loss worldwide. However, the global understanding of LUC's impact on biodiversity is mainly based on comparisons of land use endpoints (habitat vs non-habitat) in forest ecosystems. Hence, it may not generalise to savannas, which are ecologically distinct from forests, as they are inherently patchy, and disturbance adapted. Endpoint comparisons also cannot inform the management of intermediate mosaic landscapes. We aim to address these gaps by investigating species- and community-level responses of mammals and trees along a gradient of small scale agricultural expansion in the miombo woodlands of northern Mozambique. Thus, the case study represents the most common pathway of LUC and biodiversity change in the world's largest savanna. Tree abundance, mammal occupancy, and tree- and mammal-species richness showed a non-linear relationship with agricultural expansion (characterised by the Land Division Index, LDI). These occurrence and diversity metrics increased at intermediate LDI (0.3 to 0.7), started decreasing beyond LDI &gt; 0.7, and underwent high levels of decline at extreme levels of agricultural expansion (LDI &gt; 0.9). Despite similarities in species richness responses, the two taxonomic groups showed contrasting β-diversity patterns in response to increasing LDI: increased dissimilarity among tree communities (heterogenisation) and high similarity among mammals (homogenisation). Our analysis along a gradient of landscape-scale land use intensification allows a novel understanding of the impacts of different levels of land conversion, which can help guide land use and restoration policy. Biodiversity loss in this miombo landscape was lower than would be inferred from existing global syntheses of biodiversity-land use relations for Africa or the tropics, probably because such syntheses take a fully converted landscape as the endpoint. As, currently, most African savanna landscapes are a mosaic of savanna habitats and small scale agriculture, biodiversity loss is probably lower than in current global estimates, albeit with a trend towards further conversion. However, at extreme levels of land use change (LDI &gt; 0.9 or &lt; 15% habitat cover) miombo biodiversity appears to be more sensitive to LUC than inferred from the meta-analyses. To mitigate the worst effects of land use on biodiversity, our results suggest that miombo landscapes should retain &gt; 25% habitat cover and avoid LDI &gt; 0.75—after which species richness of both groups begin to decline. Our findings indicate that tree diversity may be easier to restore from natural restoration than mammal diversity, which became spatially homogeneous.</jats:p

    Inter-cluster reactivity of Metallo-aromatic and anti-aromatic Compounds and Their Applications in Molecular Electronics: A Theoretical Investigation

    Full text link
    Local reactivity descriptors such as the condensed local softness and Fukui function have been employed to investigate the inter-cluster reactivity of the metallo-aromatic (Al4Li- and Al4Na-) and anti-aromatic (Al4Li4 and Al4Na4) compounds. We use the concept of group softness and group Fukui function to study the strength of the nucleophilicity of the Al4 unit in these compounds. Our analysis shows that the trend of nucleophilicity of the Al4 unit in the above clusters is as follows; Al4Li- > Al4Na- > Al4Li4 > Al4Na 4 For the first time we have used the reactivity descriptors to show that these clusters can act as electron donating systems and thus can be used as a molecular cathode.Comment: 23 pages, 1 figure and 1 table of conten

    Diffraction in low-energy electron scattering from DNA: bridging gas phase and solid state theory

    Full text link
    Using high-quality gas phase electron scattering calculations and multiple scattering theory, we attempt to gain insights on the radiation damage to DNA induced by secondary low-energy electrons in the condensed phase, and to bridge the existing gap with the gas phase theory and experiments. The origin of different resonant features (arising from single molecules or diffraction) is discussed and the calculations are compared to existing experiments in thin films.Comment: 40 pages preprint, 12 figures, submitted to J. Chem. Phy

    Readmission to intensive care: development of a nomogram for individualising risk

    Get PDF
    Background: Readmission to intensive care during the same hospital stay has been associated with a greater risk of in-hospital mortality and has been suggested as a marker ofquality of care. There is lack of published research attempting to develop clinical prediction tools that individualise the risk of readmission to the intensive care unit during the same hospital stay. Objective: To develop a prediction model using an inception cohort of patients surviving an initial ICU stay. Design, setting and participants: The study was conducted at Liverpool Hospital, Sydney. An inception cohort of 14 952 patients aged 15 years or more surviving an initial ICU stay and transferred to general wards in the study hospital between 1 January 1997 and 31 December 2007 was used to develop the model. Binary logistic regression was used to develop the prediction model and anomogram was derived to individualise the risk of readmission to the ICU during the same hospital stay. Main outcome measure: Readmission to the ICU during the same hospital stay.Results: Among members of the study cohort there were 987 readmissions to ICU during the study period. Compared with patients not readmitted to the ICU, patients who were readmitted were more likely to have had ICU stays of at least 7 days (odds ratio [OR], 2.2 [95% CI, 1.85-2.56]); non-elective initial admission to the ICU (OR, 1.7[95% CI, 1.44-2.08]); and acute renal failure (OR, 1.6 [95%CI, 0.97-2.47]). Patients admitted to the ICU from the operating theatre or recovery ward had a lower risk of readmission to ICU than those admitted from general wards, the emergency department or other hospitals. The maximum error between observed frequencies and predicted probabilities of readmission to ICU was estimatedto be 3%. The area under the receiver operating characteristic curve of the final model was 0.66.Conclusion: We have developed a practical clinical tool toindividualise the risk of readmission to the ICU during the same hospital stay in patients who survive an initial episodeof intensive care
    • …
    corecore