4,631 research outputs found
STUDENT RADIOGRAPHERS’ PERSONALITY; CONSTANT OR INDIVIDUAL DIFFERENCES IN CHANGE? A TRANSACTIONAL ANALYSIS APPROACH
It is considered in diagnostic radiography that incompatible personalities of student radiographers can have a detrimental influence on interpersonal relationships, student retention and job satisfaction. For this reason some authors argue that personality should be a criteria that is measured prior to enrolment onto the radiography programme. However recent evidence argues that personality can change and is influenced by education, clinical and life experience, suggesting that personality assessment would be an inappropriate measure prior to student selection. This research aimed to determine whether there were different personality profiles of student radiographers across the educational tenure (3 years). To facilitate this aim a cross sectional descriptive study was undertaken, using the Transactional Analysis Subscales of the adjective check list as the data collection tool. The data was analysed using both descriptive and inferential statistics (Krusal Wallis). The results demonstrated a significant difference between the personality profiles of diagnostic radiographers across the educational tenure, suggesting that education, clinical and life experience do impact on student radiographer’s personality
Hole polaron formation and migration in olivine phosphate materials
By combining first principles calculations and experimental XPS measurements,
we investigate the electronic structure of potential Li-ion battery cathode
materials LiMPO4 (M=Mn,Fe,Co,Ni) to uncover the underlying mechanisms that
determine small hole polaron formation and migration. We show that small hole
polaron formation depends on features in the electronic structure near the
valence-band maximum and that, calculationally, these features depend on the
methodology chosen for dealing with the correlated nature of the
transition-metal d-derived states in these systems. Comparison with experiment
reveals that a hybrid functional approach is superior to GGA+U in correctly
reproducing the XPS spectra. Using this approach we find that LiNiPO4 cannot
support small hole polarons, but that the other three compounds can. The
migration barrier is determined mainly by the strong or weak bonding nature of
the states at the top of the valence band, resulting in a substantially higher
barrier for LiMnPO4 than for LiCoPO4 or LiFePO4
Ground state of two electrons on concentric spheres
We extend our analysis of two electrons on a sphere [Phys. Rev. A {\bf 79},
062517 (2009); Phys. Rev. Lett. {\bf 103}, 123008 (2009)] to electrons on
concentric spheres with different radii. The strengths and weaknesses of
several electronic structure models are analyzed, ranging from the mean-field
approximation (restricted and unrestricted Hartree-Fock solutions) to
configuration interaction expansion, leading to near-exact wave functions and
energies. The M{\o}ller-Plesset energy corrections (up to third-order) and the
asymptotic expansion for the large-spheres regime are also considered. We also
study the position intracules derived from approximate and exact wave
functions. We find evidence for the existence of a long-range Coulomb hole in
the large-spheres regime, and infer that unrestricted Hartree-Fock theory
over-localizes the electrons.Comment: 10 pages, 10 figure
Closed-form expressions for correlated density matrices: application to dispersive interactions and example of (He)2
Empirically correlated density matrices of N-electron systems are
investigated. Exact closed-form expressions are derived for the one- and
two-electron reduced density matrices from a general pairwise correlated wave
function. Approximate expressions are proposed which reflect dispersive
interactions between closed-shell centro-symmetric subsystems. Said expressions
clearly illustrate the consequences of second-order correlation effects on the
reduced density matrices. Application is made to a simple example: the (He)2
system. Reduced density matrices are explicitly calculated, correct to second
order in correlation, and compared with approximations of independent electrons
and independent electron pairs. The models proposed allow for variational
calculations of interaction energies and equilibrium distance as well as a
clear interpretation of dispersive effects on electron distributions. Both
exchange and second order correlation effects are shown to play a critical role
on the quality of the results.Comment: 22 page
The Vortex State in a Strongly Coupled Dilute Atomic Fermionic Superfluid
We show that in a dilute Fermionic superfluid, when the Fermions interact
with an infinite scattering length, a vortex state is characterized by a strong
density depletion along the vortex core. This feature can make a direct
visualization of vortices in Fermionic superfluids possible.Comment: 4 pages, 3 figures, published version, some small changes and new and
updated reference
Spin and Conductance-Peak-Spacing Distributions in Large Quantum Dots: A Density Functional Theory Study
We use spin-density-functional theory to study the spacing between
conductance peaks and the ground-state spin of 2D model quantum dots with up to
200 electrons. Distributions for different ranges of electron number are
obtained in both symmetric and asymmetric potentials. The even/odd effect is
pronounced for small symmetric dots but vanishes for large asymmetric ones,
suggesting substantially stronger interaction effects than expected. The
fraction of high-spin ground states is remarkably large.Comment: 4 pages, 3 figure
Ensemble v-representable ab-initio density functional calculation of energy and spin in atoms: atest of exchange-correlation approximations
The total energies and the spin states for atoms and their first ions with Z
= 1-86 are calculated within the the local spin-density approximation (LSDA)
and the generalized-gradient approximation (GGA) to the exchange-correlation
(xc) energy in density-functional theory. Atoms and ions for which the
ground-state density is not pure-state v-representable, are treated as ensemble
v- representable with fractional occupations of the Kohn-Sham system. A newly
developed algorithm which searches over ensemble v-representable densities [E.
Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations.
It is found that for many atoms the ionization energies obtained with the GGA
are only modestly improved with respect to experimental data, as compared to
the LSDA. However, even in those groups of atoms where the improvement is
systematic, there remains a non-negligible difference with respect to the
experiment. The ab-initio electronic configuration in the Kohn-Sham reference
system does not always equal the configuration obtained from the spectroscopic
term within the independent-electron approximation. It was shown that use of
the latter configuration can prevent the energy-minimization process from
converging to the global minimum, e.g. in lanthanides. The spin values
calculated ab-initio fit the experiment for most atoms and are almost
unaffected by the choice of the xc-functional. Among the systems with
incorrectly obtained spin there exist some cases (e.g. V, Pt) for which the
result is found to be stable with respect to small variations in the
xc-approximation. These findings suggest a necessity for a significant
modification of the exchange-correlation functional, probably of a non-local
nature, to accurately describe such systems. PACS numbers: 31.15.
Density Functional Theory for the Photoionization Dynamics of Uracil
Photoionization dynamics of the RNA base Uracil is studied in the framework
of Density Functional Theory (DFT). The photoionization calculations take
advantage of a newly developed parallel version of a multicentric approach to
the calculation of the electronic continuum spectrum which uses a set of
B-spline radial basis functions and a Kohn-Sham density functional hamiltonian.
Both valence and core ionizations are considered. Scattering resonances in
selected single-particle ionization channels are classified by the symmetry of
the resonant state and the peak energy position in the photoelectron kinetic
energy scale; the present results highlight once more the site specificity of
core ionization processes. We further suggest that the resonant structures
previously characterized in low-energy electron collision experiments are
partly shifted below threshold by the photoionization processes. A critical
evaluation of the theoretical results providing a guide for future experimental
work on similar biosystems
Relevance of the slowly-varying electron gas to atoms, molecules, and solids
Under a certain scaling, the electron densities of finite systems become both
large and slowly-varying, so that the gradient expansions of the density
functionals for the Kohn-Sham kinetic and exchange energies become
asymptotically exact to order . Neutral atoms of large scale
similarly, but a cusp correction at the nucleus requires generalizing the
gradient expansion for exchange, producing the wrong gradient coefficient in
the slowly-varying limit. Meta-generalized gradient approximations (meta-GGA's)
recover both the slowly-varying and large- limits. GGA correlation energies
of large-Z atoms are found to be accurate.Comment: 5 pages, 4 figures, submitted at PR
Extended Huckel theory for bandstructure, chemistry, and transport. II. Silicon
In this second paper, we develop transferable semi-empirical parameters for
the technologically important material, silicon, using Extended Huckel Theory
(EHT) to calculate its electronic structure. The EHT-parameters areoptimized to
experimental target values of the band dispersion of bulk-silicon. We obtain a
very good quantitative match to the bandstructure characteristics such as
bandedges and effective masses, which are competitive with the values obtained
within an orthogonal-tight binding model for silicon. The
transferability of the parameters is investigated applying them to different
physical and chemical environments by calculating the bandstructure of two
reconstructed surfaces with different orientations: Si(100) (2x1) and Si(111)
(2x1). The reproduced - and -surface bands agree in part
quantitatively with DFT-GW calculations and PES/IPES experiments demonstrating
their robustness to environmental changes. We further apply the silicon
parameters to describe the 1D band dispersion of a unrelaxed rectangular
silicon nanowire (SiNW) and demonstrate the EHT-approach of surface passivation
using hydrogen. Our EHT-parameters thus provide a quantitative model of
bulk-silicon and silicon-based materials such as contacts and surfaces, which
are essential ingredients towards a quantitative quantum transport simulation
through silicon-based heterostructures.Comment: 9 pages, 9 figure
- …