715 research outputs found
New perspectives in pediatric dialysis technologies: the case for neonates and infants with acute kidney injury
Advancements in pediatric dialysis generally rely on adaptation of technology originally developed for adults. However, in the last decade, particular attention has been paid to neonatal extracorporeal therapies for acute kidney care, an area in which technology has made giant strides in recent years. Peritoneal dialysis (PD) is the kidney replacement therapy (KRT) of choice in the youngest age group because of its simplicity and effectiveness. However, extracorporeal blood purification provides more rapid clearance of solutes and faster fluid removal. Hemodialysis (HD) and continuous KRT (CKRT) are thus the most used dialysis modalities for pediatric acute kidney injury (AKI) in developed countries. The utilization of extracorporeal dialysis for small children is associated with a series of clinical and technical challenges which have discouraged the use of CKRT in this population. The revolution in the management of AKI in newborns has started recently with the development of new CKRT machines for small infants. These new devices have a small extracorporeal volume that potentially prevents the use of blood to prime lines and dialyzer, allow a better volume control and the use of small-sized catheter without compromising the blood flow amount. Thanks to the development of new dedicated devices, we are currently dealing with a true “scientific revolution” in the management of neonates and infants who require an acute kidney support
Otolith microstructure analysis for age determination of the Amazon characid Triportheus albus
Juvenile Triportheus albus (Characidae) were sampled with a ringnet in the Central Amazon floodplain between March and April 1993. The microstructure of the otoliths of T. albus was analyzed under the scanning electron microscope. The lapillus shows regular increments when ground in the sagittal plane and can be utilized for age determination. There are marks or checks formed at intervals of 14 rings, sometimes of 7 rings. Broad increments (>4.5 mum) rarely show subrings. The first 160 increments can be counted easily. In individuals which are bigger than 100 mm the microstructures at the edge are often undistinguishable. The calculation by counting of the increments yields an estimated daily growth of 0.426 mm (p <0.01) for juveniles of T albu
The role of hydropower in decarbonisation scenarios
An increased penetration of renewable energy sources is essential for the energy transition. A major role will be played by wind and solar, as they are widely available. Hydropower is another crucial resource, currently covering large shares of power generation (e.g., Norway, Italy, Brazil). Despite little expected growth, in a context of increasing electrification, improved integration of hydropower can play a critical role thanks to programmable operation. This work addresses the modelling of hydropower flexibility in energy system models and analyses the impact of hydropower operation on CO2 emission-constrained scenarios. To implement the study, a detailed dataset of the Italian programmable hydroelectric plants is created, using open-source information, covering location, rated power, and storage capacity. Inflow timeseries are derived from historical operational data. These new sets of data are employed in OMNI-ES (a multi-node, multi-sector, and multi-vector energy system model) to study optimal configurations and operation of the Italian energy system in decarbonisation scenarios, such as net-zero-CO2 and Fit-for-55 targets. Considering different operational strategies and multiple historical reference years (impacting the inflow), results demonstrate significant changes in hydropower behaviour and highlight its relevance as zero-carbon resource in terms of both power and energy output, influencing the installation of other technologies
Computer vision approach for the determination of microbial concentration and growth kinetics using a low cost sensor system
The measurement of microbial contamination is of primary importance in different fields, from environmental monitoring to food safety and clinical analysis. Today, almost all microbiology laboratories make microbial concentration measurements using the standard Plate Count Technique (PCT), a manual method that must be performed by trained personnel. Since manual PCT analysis can result in eye fatigue and errors, in particular when hundreds of samples are processed every day, automatic colony counters have been built and are commercially available. While quick and reliable, these instruments are generally expensive, thus, portable colony counters based on smartphones have been developed and are of low cost but also not accurate as the commercial benchtop instruments. In this paper, a novel computer vision sensor system is presented that can measure the microbial concentration of a sample under test and also estimate the microbial growth kinetics by monitoring the colonies grown on a Petri dish at regular time intervals. The proposed method has been in-house validated by performing PCT analysis in parallel under the same conditions and using these results as a reference. All the measurements have been carried out in a laboratory using benchtop instruments, however, such a system can also be realized as an embedded sensor system to be deployed for microbial analysis outside a laboratory environment
CaracterĂsticas das espĂ©cies vegetais dispersas por aves e morcegos e suas implicações na recuperação ou manutenção de ambientes florestais.
Editores tĂ©cnicos: MarcĂlio JosĂ© Thomazini, Elenice Fritzsons, PatrĂcia Raquel Silva, Guilherme Schnell e Schuhli, Denise Jeton Cardoso, Luziane Franciscon. EVINCI. Resumos
INTEGRAL/RossiXTE high-energy observation of a state transition of GX 339-4
On 2004 August 15, we observed a fast (shorter than 10 hours) state
transition in the bright black-hole transient GX 339-4 simultaneously with
RossiXTE and INTEGRAL. This transition was evident both in timing and spectral
properties. Combining the data from PCA, HEXTE and IBIS, we obtained good
quality broad-band (3-200 keV) energy spectra before and after the transition.
These spectra indicate that the hard component steepened. Also, the high-energy
cutoff that was present at ~70 keV before the transition was not detected after
the transition. This is the first time that an accurate determination of the
broad-band spectrum across such a transition has been measured on a short time
scale. It shows that, although some spectral parameters do not change abruptly
through the transition, the high-energy cutoff increases/disappears rather
fast. These results constitute a benchmark on which to test theoretical models
for the production of the hard component in these systems.Comment: Accepted for publication in MNRAS (9 pages, 6 figures
Exopolysaccharides from vaginal lactobacilli modulate microbial biofilms
Background: Exopolysaccharides (EPS) secreted by beneficial lactobacilli exert a plethora of positive activities, but little is known about their effects on biofilms of opportunistic vaginal pathogens and especially on biofilms of lactobacilli themselves. Here, the EPS produced by six vaginal lactobacilli, belonging to Lactobacillus crispatus (BC1, BC4, BC5) and Lactobacillus gasseri (BC9, BC12, BC14) species were isolated from cultural supernatants and lyophilized. Results: Lactobacillus EPS were chemically characterized in terms of monosaccharide composition by liquid chromatography (LC) analysis coupled to UV and mass spectrometry (MS) detection. Moreover, the ability of EPS (0.1, 0.5, 1 mg/mL) to stimulate the biofilm formation of lactobacilli and to inhibit the formation of pathogens’ biofilms was evaluated by crystal violet (CV) staining and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Isolated EPS (yields 133–426 mg/L) were heteropolysaccharides mainly composed of d-mannose (40–52%) and d-glucose (11–30%). For the first time we demonstrated that Lactobacillus EPS were able to stimulate in a dose-dependent manner (p < 0.05) the formation of biofilms of ten strains belonging to L. crispatus, L. gasseri and Limosilactobacillus vaginalis species, in terms of cell viability (84–282% increase at 1 mg/mL) and especially biofilm biomass (40–195% increase at 1 mg/mL), quantified with MTT assay and CV staining, respectively. EPS released from L. crispatus and L. gasseri were found to better stimulate the biofilms of the same producer species rather than that of other species, including producing strains themselves and other strains. Conversely, the biofilm formation of bacterial (Escherichia coli, Staphylococcus spp., Enterococcus spp. and Streptococcus agalactiae) and fungal (Candida spp.) pathogens was inhibited. The anti-biofilm activity was dose-dependent and was more marked for L. gasseri-derived EPS (inhibition up to 86%, 70%, and 58% at 1 mg/mL, 0.5 mg/mL, and 0.1 mg/mL, respectively), whilst L. crispatus-derived EPS resulted overall less efficient (inhibition up to 58% at 1 mg/mL and 40% at 0.5 mg/mL) (p < 0.05). Conclusions: Lactobacilli-derived EPS favour the biofilm formation of lactobacilli preventing, at the same time, that of opportunistic pathogens. These results support the possible employment of EPS as postbiotics in medicine as a therapeutic/preventive strategy to counteract vaginal infections
The central role of endothelium in hereditary angioedema due to C1 inhibitor deficiency
An impairment of the endothelial barrier function underlies a wide spectrum of pathological conditions. Hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) can be considered the \u201cpathophysiological and clinical paradigm\u201d of Paroxysmal Permeability Diseases (PPDs), conditions characterized by recurrent transient primitively functional alteration of the endothelial sieving properties, not due to inflammatory-ischemic-degenerative injury and completely reversible after the acute flare. It is a rare yet probably still underdiagnosed disease which presents with localized, non-pitting swelling of the skin and submucosal tissues of the upper respiratory and gastrointestinal tracts, without significant wheals or pruritus. The present review addresses the pathophysiology of C1-INH-HAE with a focus on the crucial role of the endothelium during contact and kallikrein/kinin system (CAS and KKS) activation, currently available and emerging biomarkers, methods applied to get new insights into the mechanisms underlying the disease (2D, 3D and in vivo systems), new promising investigation techniques (autonomic nervous system analysis, capillaroscopy, flow-mediated dilation method, non-invasive finger plethysmography). Hints are given to the binding of C1-INH to endothelial cells. Finally, crucial issues as the local vs systemic nature of CAS/KKS activation, the episodic nature of attacks vs constant C1-INH deficiency, pros and cons as well as future perspectives of available methodologies are briefly discussed
Development and Characterization of Azithromycin-Loaded Microemulsions: A Promising Tool for the Treatment of Bacterial Skin Infections
In recent years, the treatment of bacterial skin infections has been considered a major healthcare issue due to the growing emergence of antibiotic-resistant strains of Staphylococcus aureus. The incorporation of antibiotics in appropriate nanosystems could represent a promising strategy, able to overcome several drawbacks of the topical treatment of infections, including poor drug retention within the skin. The present work aims to develop microemulsions containing azithromycin (AZT), a broad-spectrum macrolide antibiotic. Firstly, AZT solubility in various oils, surfactants and co-surfactants was assessed to select the main components. Subsequently, microemulsions composed of vitamin E acetate, Labrasol (R) and Transcutol (R) P were prepared and characterized for their pH, viscosity, droplet size, zeta potential and ability to release the drug and to promote its retention inside porcine skin. Antimicrobial activity against S. aureus methicillin-resistant strains (MRSA) and the biocompatibility of microemulsions were evaluated. Microemulsions showed an acceptable pH and were characterized by different droplet sizes and viscosities depending on their composition. Interestingly, they provided a prolonged release of AZT and promoted its accumulation inside the skin. Finally, microemulsions retained AZT efficacy on MRSA and were not cytotoxic. Hence, the developed AZT-loaded microemulsions could be considered as useful nanocarriers for the treatment of antibiotic-resistant infections of the skin
- …