5 research outputs found

    Evaluation of the Stressed-strained State of Crossings of the 1/11 Type Turnouts by the Finite Element Method

    Full text link
    We carried out evaluation of the stressed-strained state of crossings of turnouts by the finite element method in the Ansys programming complex. It was established that under conditions of three-axial compression, at large stresses of vertical compression, the cracks of multi-cycle metal fatigue of the crossing develop. It was found that the development of defects by the code DS 14.1-14.2 on the rolling surface of the cast part of a wing rail and the crossing's core occurs due to high contact stresses near the edge of the working face of a wing rail and the crossing's core. They occur in this region in the form of cyclically repeated and sign-alternating normal and tangential stresses from cyclically recurring power impacts from the wheels of rolling stock of railroad transport.It was established that for the normal stresses, values that are maximal by absolute magnitude correspond to the moment when a wheel passes the estiamted cross section of the crossing. For the tangential stresses, on the contrary, at the moment when the wheel is over the estimated cross section, their magnitude is close to zero. The obtained results of the stressed-strained state of crossings are necessary for the optimal design of transverse and longitudinal profiles of the crossing. This will make it possible to extend operation life cycle of the crossings of turnouts and save state budget resources for their current maintenance and repair

    Development of a Promising System for Diagnosing the Frogs of Railroad Switches Using the Transverse Profile Measurement Method

    Full text link
    We have developed a system for diagnosing the frogs of railroad switches, based on the application of modern microcontrollers of the type ESP with high technical characteristics and the simultaneous use of the information technology IoT (Internet of Things). The proposed system has advantages over mechanical systems in terms of the accuracy of data, their operational processing and submission to user in order to analyze technical condition of frogs at railroad switches. The results of measuring the transverse profile of frogs at railroad switches make it possible to take scientifically-substantiated decisions regarding the need for recovery repair of frogs by the method of surfacing and for control over gradual decrease in their carrying capacity, for establishing their actual technical condition and residual resource.We carried out experimental-theoretical research into longitudinal profile of frogs at railroad switches laid on the reinforced concrete bars. It was established as a result that after passing 50–65 million tons of cargo (that corresponds to the medium degree of wear) the trajectory takes the shape of a bump. We observe sharp hollows on the reinforced concrete base in the zone where a wheel rolls from a rail wing onto the core, characterized by significant total inclination. Subsequently, when the passed cargo increases, the number of sinusoidal irregularities grows. At wear close to maximal (80–95 million tons passed), the percentage of unfavorable trajectories (sinusoidal and hollows) grows; at low wear, they make up 49.8 %, at a wear of 5–6 mm and larger – 88.3 %. Sometimes there is a transformation of the sinusoidal irregularities into the wave-shaped ones.We have established characteristic motion trajectories of the center of mass of the wheel over the frog depending on the wear of rail wings and the core of a frog and the passed cargo. A mathematical model was constructed for predicting the wear of frog profile depending on the total weight of passed cargo

    A Comprehensive Procedure for Estimating the Stressed-strained State of A Reinforced Concrete Bridge Under the Action of Variable Environmental Temperatures

    Full text link
    This paper reports the full-scale experimental measurements of temperature distribution over the surfaces of bridges' steel-concrete beams under the influence of positive and negative ambient temperatures. It has been established that the temperature is distributed unevenly along the vertical direction of a bridge's steel-concrete beam. It was found that the metal beam accepted higher temperature values. The maximum registered temperature difference between a metal beam and a reinforced concrete slab at positive ambient temperatures was +9.0 °C, and the minimum temperature difference was −2.1 °C. The mathematical models for calculating a temperature field and a thermally strained state of bridges' steel-concrete beams under the influence of variable climatic temperature changes in the environment have been improved, taking into consideration the uneven temperature distribution across a bridge's reinforced concrete beam. The possibility has been established to consider a one-dimensional problem or to apply the three-dimensional estimated problem schemes as the estimation schemes for determining the thermo-elastic state of reinforced concrete bridges. The temperature field and the stressed state of bridges' reinforced concrete beams were determined. It was found that the maximum stresses arise at the place where a metal beam meets a reinforced concrete slab. These stresses amount to 73.4 MPa at positive ambient temperatures, and 69.3 MPa at negative ambient temperatures. The amount of stresses is up to 35 % of the permissible stress values. The overall stressed-strained state of a bridge's reinforced concrete beams should be assessed at the joint action of temperature-induced climatic influences and loads from moving vehicle

    Theoretical Study Into Efficiency of the Improved Longitudinal Profile of Frogs at Railroad Switches

    Get PDF
    We have developed a comprehensive method to prolong the time of operation of frogs at railroad switches, based on the consideration of a longitudinal profile of the frog, the magnitude of dynamic forces and normal stresses.We have improved a longitudinal profile of the frog, brand 1/11, project 1740, by the method of surfacing under field operation conditions. The slopes of a trajectory after the passage of an average statistical wheel over the proposed profile amount to 3.7 ‰ instead of 10 ‰ for a standard profile of the frog.It was established that increasing a load on the frog to 60 % at the expense of a deflection under the frog beam leads to the accelerated disarrangement of the frog, as a result of fatigue defects at the rolling surface, while the cost of frog operation in this case increases by five times.We modeled a dynamic interaction between the rolling stock and a standard, as well as the proposed, longitudinal profiles of frogs. Calculation of dynamic processes of the nonlinear interaction between the rolling stock and a standard profile of the frog and the profile restored by surfacing, showed that the magnitude of forces for the proposed frog at the motion speed of 150 km/h is 50 % lower compared with a standard longitudinal profile. At linear simulation of dynamic additions of forces, the magnitude of forces decreases for the proposed profile to 30 %.We employed a graphical method to calculate the magnitudes of axial inertia moments and the moments of resistance in the characteristic cross sections of the frog. The estimation of the stressed-strained state of the frog was performed using equations of five moments for a continuous beam on elastic point supports. It was established that stresses at the static calculation of the frog are low and are much less than the maximum permissible magnitude of stresses for a given grade of steel. Therefore, we can argue that the frog works under a load at the expense of existing reserve of strength
    corecore