23 research outputs found

    Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs

    Get PDF
    While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues

    Locating vep equivalent dipoles in magnetic resonance images

    No full text
    Pattern-reversal and diffuse flash visual evoked potentials (VEPs) were obtained from 4 normal adults. A spatio-temporal dipole model was used to determine the location of the hypothetical equivalent dipoles consistent with the scalp distribution of the VEPs. Equivalent dipoles representing ERG and VEP activity were placed within 3-D magnetic resonance images of the brain. Most of the localization error appeared to be due to inadequate sampling of the potential field in frontal and occipital areas by the 10-20 system of electrode placement. Locating electrophysiologic dipoles within magnetic resonance images of brain structure allows evaluation of dipole localization techniques. © 1995 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    LGI1 and CASPR2 autoimmunity in children: Systematic literature review and report of a young girl with Morvan syndrome.

    No full text
    Leucine-rich glioma-inactivated protein 1 (LGI1) and contactin-associated protein-like 2 (CASPR2) neurological autoimmunity in adults has been associated with various clinical syndromes involving central, peripheral and autonomic nervous system, while data in children is limited. We perform the first systematic literature review on paediatric LGI1 and CASPR2 autoimmunity, with focus on clinical data, in order to contribute to the definition of clinical features of LGI1 and CASPR2 autoimmunity in paediatric age and favour early diagnosis. Additionally, we report the youngest-to-date case of Morvan syndrome. We identified 37 published paediatric cases of LGI1 and/or CASPR2 autoimmunity. Most frequent syndromes were encephalitis in LGI1-positive and isolated epilepsy in CASPR2-positive children, while syndromes with predominant peripheral symptoms were most frequent in double-positive children. With the limitations imposed by the low number of cases, differences to published adult cohorts included: absence of faciobrachial dystonic seizures and hyponatremia in patients with LGI1-positive encephalitis; slightly higher proportion of isolated epilepsy syndromes in CASPR2-positive patients; absence of tumour in the whole cohort

    Cognitive, Behavioral, and Sensory Profile of Pallister–Killian Syndrome: A Prospective Study of 22 Individuals

    Get PDF
    Background: Developmental delay and intellectual disability are two pivotal elements of the phenotype of Pallister–Killian Syndrome (PKS). Our study aims to define the cognitive, adaptive, behavioral, and sensory profile of these patients and to evaluate possible correlations between the different aspects investigated and with the main clinical and demographic variables. Methods: Individuals of any age with genetically confirmed PKS were recruited. Those ≤42 months were ad-ministered the Bayley Scales of Infant and Toddler Development Third Edition (Bayley-III), and those >42 months the Vineland Adaptive Behavior Scales—Second Edition (Vineland-II). Stereotyped behaviors (Stereotypy Severity Scale, SSS) and aggressive behaviors (Behavior Problems Inventory—Short Version, BPIs) were assessed in all subjects >1 year; sensory profile (Child Sensory Profile 2, C-SP2) in all aged 2–18 years. Results: Twenty-two subjects were enrolled (11 F/11 M; age 9 months to 28 years). All subjects ≤42 months had psychomotor developmental delay. Of the subjects >42 months, 15 had low IQ deviation, and 1 in the normal range. Stereotypies were frequent (median SSS-total score 25/68). Lower Vineland-II values corresponded to greater intensity and frequency of stereotypies (p = 0.004 and p = 0.003), and self-injurious behaviors (p = 0.002 and p = 0.002). Patients with severe low vision had greater interference of stereotypies (p = 0.027), and frequency and severity of aggressive behaviors (p = 0.026; p = 0.032). The C-SP2, while not homogeneous across subjects, showed prevalence of low registration and sensory seeking profiles and hypersensitivity to tactile and auditory stimuli. Lower Vineland-II scores correlated with higher Registration scores (p = 0.041), while stereotypies were more frequent and severe in case of high auditory sensitivity (p = 0.019; p = 0.007). Finally, greater sleep impairment correlated with stereotypies and self-injurious behaviors, and lower Vineland-II scores. Conclusions: The present study provides a further step in the investigation of the etiopathogenesis of the syndrome. Furthermore, these aspects could guide rehabilitation therapy through the identification of targeted protocols

    Spinal cord involvement and paroxysmal events in "Infantile Onset Transient Hypomyelination" due to TMEM63A mutation

    No full text
    Monoallelic mutations on TMEM63A have been recently reported as cause of a previously unrecognized disorder named "infantile-onset transient hypomyelination". Clinical and neuroradiological presentation is described as highly similar to Pelizaeus-Merzbacher Disease but evolution over time was surprisingly benign with a progressive spontaneous improving course. We report on a new TMEM63A-mutated girl. The clinical picture was similar to the one already described except for the presence of recurrent episodes of unilateral eyelid twitching, and for the evidence of spinal cord involvement on MRI. These are interesting findings helping in distinguishing this condition from classic PMD since early disease stages. However, additional observations are needed to confirm if these are common features of this condition

    The Italian autism network (ITAN): a resource for molecular genetics and biomarker investigations

    No full text
    Background: A substantial genetic component accounts for Autism Spectrum Disorders (ASD) aetiology, with some rare and common genetic risk factors recently identified. Large collections of DNAs from thoroughly characterized ASD families are an essential step to confirm genetic risk factors, identify new variants and investigate genotype-phenotype correlations. The Italian Autism Network aimed at constituting a clinical database and a biorepository of samples derived from ASD subjects and first-degree relatives extensively and consistently characterized by child psychiatry centers in Italy. Methods: The study was approved by the ethical committee of the University of Verona, the coordinating site, and by the local ethical committees of each recruiting site. Certified staff was specifically trained at each site for the overall study conduct, for clinical protocol administration and handling of biological material. A centralized database was developed to collect clinical assessment and medical records from each recruiting site. Children were eligible for recruitment based on the following inclusion criteria: age 4\u201318 years, at least one parent or legal guardian giving voluntary written consent, meeting DSM-IV criteria for Autistic Disorder or Asperger\u2019s Disorder or Pervasive Developmental Disorder NOS. Affected individuals were assessed by full psychiatric, neurological and physical examination, evaluation with ADI-R and ADOS scales, cognitive assessment with Wechsler Intelligence Scale for Children or Preschool and Primary, Leiter International Performance Scale or Griffiths Mental Developmental Scale. Additional evaluations included language assessment, the Krug Asperger\u2019s Disorder Index, and instrumental examination such as EEG and structural MRI. DNA, RNA and plasma were collected from eligible individuals and relatives. A central laboratory was established to host the biorepository, perform DNA and RNA extraction and lymphocytes immortalisation. Discussion: The study has led to an extensive collection of biological samples associated with standardised clinical assessments from a network of expert clinicians and psychologists. Eighteen sites have received ADI/ADOS training, thirteen of which have been actively recruiting. The clinical database currently includes information on 812 individuals from 249 families, and the biorepository has samples for 98% of the subjects. This effort has generated a highly valuable resource for conducting clinical and genetic research of ASD, amenable to further expansion

    Cognitive, Behavioral, and Sensory Profile of Pallister–Killian Syndrome: A Prospective Study of 22 Individuals

    No full text
    Background: Developmental delay and intellectual disability are two pivotal elements of the phenotype of Pallister–Killian Syndrome (PKS). Our study aims to define the cognitive, adaptive, behavioral, and sensory profile of these patients and to evaluate possible correlations between the different aspects investigated and with the main clinical and demographic variables. Methods: Individuals of any age with genetically confirmed PKS were recruited. Those ≤ 42 months were administered the Bayley Scales of Infant and Toddler Development Third Edition (Bayley-III), and those > 42 months the Vineland Adaptive Behavior Scales—Second Edition (Vineland-II). Stereotyped behaviors (Stereotypy Severity Scale, SSS) and aggressive behaviors (Behavior Problems Inventory—Short Version, BPIs) were assessed in all subjects > 1 year; sensory profile (Child Sensory Profile 2, C-SP2) in all aged 2–18 years. Results: Twenty-two subjects were enrolled (11 F/11 M; age 9 months to 28 years). All subjects ≤ 42 months had psychomotor developmental delay. Of the subjects > 42 months, 15 had low IQ deviation, and 1 in the normal range. Stereotypies were frequent (median SSS-total score 25/68). Lower Vineland-II values corresponded to greater intensity and frequency of stereotypies (p = 0.004 and p = 0.003), and self-injurious behaviors (p = 0.002 and p = 0.002). Patients with severe low vision had greater interference of stereotypies (p = 0.027), and frequency and severity of aggressive behaviors (p = 0.026; p = 0.032). The C-SP2, while not homogeneous across subjects, showed prevalence of low registration and sensory seeking profiles and hypersensitivity to tactile and auditory stimuli. Lower Vineland-II scores correlated with higher Registration scores (p = 0.041), while stereotypies were more frequent and severe in case of high auditory sensitivity (p = 0.019; p = 0.007). Finally, greater sleep impairment correlated with stereotypies and self-injurious behaviors, and lower Vineland-II scores. Conclusions: The present study provides a further step in the investigation of the etiopathogenesis of the syndrome. Furthermore, these aspects could guide rehabilitation therapy through the identification of targeted protocols

    Clinical features and outcome of 6 new patients carrying de novoKCNB1gene mutations

    No full text
    Objective: To describe electroclinical features and outcome of 6 patients harboring KCNB1 mutations.& para;& para;Methods: Clinical, EEG, neuropsychological, and brain MRI data analysis. Targeted next-generation sequencing of a 95 epilepsy gene panel.& para;& para;Results: The mean age at seizure onset was 11 months. The mean follow-up of 11.3 years documented that 4 patients following an infantile phase of frequent seizures became seizure free; the mean age at seizure offset was 4.25 years. Epilepsy phenotypes comprised West syndrome in 2 patients, infantile-onset unspecified generalized epilepsy, myoclonic and photosensitive eyelid myoclonia epilepsy resembling Jeavons syndrome, Lennox-Gastaut syndrome, and focal epilepsy with prolonged occipital or clonic seizures in each and every one. Five patients had developmental delay prior to seizure onset evolving into severe intellectual disability with absent speech and autistic traits in one and stereotypic hand movements with impulse control disorder in another. The patient with Jeavons syndrome evolved into moderate intellectual disability. Mutations were de novo, 4 missense and 2 nonsense, 5 were novel, and 1 resulted from somatic mosaicism.& para;& para;Conclusions: KCNB1-related manifestations include a spectrum of infantile-onset generalized or focal seizures whose combination leads to early infantile epileptic encephalopathy including West, Lennox-Gastaut, and Jeavons syndromes. Long-term follow-up highlights that following a stormy phase, seizures subside or cease and treatment may be eased or withdrawn. Cognitive and motor functions are almost always delayed prior to seizure onset and evolve into severe, persistent impairment. Thus, KCNB1 mutations are associated with diffuse brain dysfunction combining seizures, motor, and cognitive impairment
    corecore