192 research outputs found

    Toxic metal enrichment and boating intensity: sediment records of antifoulant copper in shallow lakes of eastern England

    Get PDF
    Tributyltin (TBT), an aqueous biocide derived from antifouling paint pollution, is known to have impacted coastal marine ecosystems, and has been reported in the sediment of the Norfolk and Suffolk Broads, a network of rivers and shallow lakes in eastern England. In the marine environment, the 1987 TBT ban has resulted in expanded use of alternative biocides, raising the question of whether these products too have impacted the Broads ecosystem and freshwaters in general. Here we examine the lake sediment record in the Norfolk and Suffolk Broads for contamination by copper (Cu) (as an active biocide agent) and zinc (Zn) (as a component of booster biocides), to assess their occurrence and potential for causing environmental harm in freshwater ecosystems. We find that, after the introduction of leisure boating, there is a statistically significant difference in Cu enrichment between heavily and lightly boated sites, while no such difference exists prior to this time. At the heavily boated sites the onset of Cu enrichment coincides with a period of rapid increase in leisure boating. Such enrichment is maintained to the present day, with some evidence of continued increase. We conclude that Cu-based antifouling has measurably contaminated lakes exposed to boating, at concentrations high enough to cause ecological harm. Similar findings can be expected at other boated freshwater ecosystems elsewhere in the world

    β€œ<i>I do it because they do it</i>”:social-neutralisation in information security practices of Saudi medical interns

    Get PDF
    Successful implementation of information security policies (ISP) and IT controls play an important role in safeguarding patient privacy in healthcare organizations. Our study investigates the factors that lead to healthcare practitioners' neutralisation of ISPs, leading to non-compliance. The study adopted a qualitative approach and conducted a series of semi-structured interviews with medical interns and hospital IT department managers and staff in an academic hospital in Saudi Arabia. The study's findings revealed that the MIs imitate their peers' actions and employ similar justifications when violating ISP dictates. Moreover, MI team superiors' (seniors) ISP non-compliance influence MIs tendency to invoke neutralisation techniques. We found that the trust between the medical team members is an essential social facilitator that motivates MIs to invoke neutralisation techniques to justify violating ISP policies and controls. These findings add new insights that help us to understand the relationship between the social context and neutralisation theory in triggering ISP non-compliance

    Local treatment of cancellous bone grafts with BMP-7 and zoledronate increases both the bone formation rate and bone density: A bone chamber study in rats

    Get PDF
    Background and purpose The remodeling of morselized bone grafts in revision surgery can be enhanced by an anabolic substance such as a bone morphogenetic protein (BMP). On the other hand, BMPs boost catabolism and might cause a premature resorption, both of the graft and of the new-formed bone. Bisphosphonates inactivate osteoclasts and can be used to control the resorption. We studied a combination of both drugs as a local admix to a cancellous allograft. Methods Cancellous bone allografts were harvested and freeze-dried. Either saline, BMP-7, the bisphosphonate zoledronate, or a combination of BMP-7 and zoledronate were added in solution. The grafts were placed in bone conduction chambers and implanted in the proximal tibia of 34 rats. The grafts were harvested after 6 weeks and evaluated by histomorphometry. Results Bone volume/total volume (BV/TV) was 50% in the grafts treated with the combination of BMP-7 and zoledronate and 16% in the saline controls (p < 0.001). In the zoledronate group BV/TV was 56%, and in the BMP group it was 14%. The ingrowth distance of new bone into the graft was 3.5 mm for the combination of BMP-7 and zoledronate and 2.6 mm in the saline control (p = 0.002). The net amount of retained remodeled bone was more than 4 times higher when BMP-7 and zoledronate were combined than in the controls. Interpretation An anabolic drug like BMP-7 can be combined with an anti-catabolic bisphosphonate as local bone graft adjunct, and the combination increases the amount of remaining bone after remodeling is complete

    Inhibition of SLPI ameliorates disease activity in experimental autoimmune encephalomyelitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The secretory leukocyte protease inhibitor (SLPI) exerts wide ranging effects on inflammatory pathways and is upregulated in EAE but the biological role of SLPI in EAE, an animal model of multiple sclerosis is unknown</p> <p>Methods</p> <p>To investigate the pathophysiological effects of SLPI within EAE, we induced SLPI-neutralizing antibodies in mice and rats to determine the clinical severity of the disease. In addition we studied the effects of SLPI on the anti-inflammatory cytokine TGF-Ξ².</p> <p>Results</p> <p>The induction of SLPI neutralizing antibodies resulted in a milder disease course in mouse and rat EAE. SLPI neutralization was associated with increased serum levels of TGF-Ξ² and increased numbers of FoxP3+ CD4+ T cells in lymph nodes. <it>In vitro</it>, the addition of SLPI significantly decreased the number of functional FoxP3+ CD25<sup>hi </sup>CD4+ regulatory T cells in cultures of naive human CD4+ T cells. Adding recombinant TGF-Ξ² to SLPI-treated human T cell cultures neutralized SLPI's inhibitory effect on regulatory T cell differentiation.</p> <p>Conclusion</p> <p>In EAE, SLPI exerts potent pro-inflammatory actions by modulation of T-cell activity and its neutralization may be beneficial for the disease.</p

    The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine

    Get PDF
    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1βˆ’/βˆ’) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1βˆ’/βˆ’ mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function

    Rhinovirus-induced basic fibroblast growth factor release mediates airway remodeling features

    Get PDF
    BACKGROUND: Human rhinoviruses, major precipitants of asthma exacerbations, induce lower airway inflammation and mediate angiogenesis. The purpose of this study was to assess the possibility that rhinoviruses may also contribute to the fibrotic component of airway remodeling. METHODS: Levels of basic fibroblast growth factor (bFGF) mRNA and protein were measured following rhinovirus infection of bronchial epithelial cells. The profibrotic effect of epithelial products was assessed by DNA synthesis and matrix metalloproteinase activity assays. Moreover, epithelial cells were exposed to supernatants from cultured peripheral blood mononuclear cells, obtained from healthy donors or atopic asthmatic subjects and subsequently infected by rhinovirus and bFGF release was estimated. bFGF was also measured in respiratory secretions from atopic asthmatic patients before and during rhinovirus-induced asthma exacerbations. RESULTS: Rhinovirus epithelial infection stimulated mRNA expression and release of bFGF, the latter being positively correlated with cell death under conditions promoting rhinovirus-induced cytotoxicity. Supernatants from infected cultures induced lung fibroblast proliferation, which was inhibited by anti-bFGF antibody, and demonstrated increased matrix metalloproteinase activity. Rhinovirus-mediated bFGF release was significantly higher in an in vitro simulation of atopic asthmatic environment and, importantly, during rhinovirus-associated asthma exacerbations. CONCLUSIONS: Rhinovirus infection induces bFGF release by airway epithelium, and stimulates stroma cell proliferation contributing to airway remodeling in asthma. Repeated rhinovirus infections may promote asthma persistence, particularly in the context of atopy; prevention of such infections may influence the natural history of asthma

    Matrix Metalloprotease 9 Mediates Neutrophil Migration into the Airways in Response to Influenza Virus-Induced Toll-Like Receptor Signaling

    Get PDF
    The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFΞ± were reduced in the Myd88βˆ’/βˆ’ airways. Furthermore, TNFΞ± induced MMP9 secretion by neutrophils and blocking TNFΞ± in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes
    • …
    corecore