1,035 research outputs found

    Evolutionary and developmental dynamics of sex-biased gene expression in common frogs with proto-Y chromosomes.

    Get PDF
    The patterns of gene expression on highly differentiated sex chromosomes differ drastically from those on autosomes, due to sex-specific patterns of selection and inheritance. As a result, X chromosomes are often enriched in female-biased genes (feminization) and Z chromosomes in male-biased genes (masculinization). However, it is not known how quickly sexualization of gene expression and transcriptional degeneration evolve after sex-chromosome formation. Furthermore, little is known about how sex-biased gene expression varies throughout development. We sample a population of common frogs (Rana temporaria) with limited sex-chromosome differentiation (proto-sex chromosome), leaky genetic sex determination evidenced by the occurrence of XX males, and delayed gonadal development, meaning that XY individuals may first develop ovaries before switching to testes. Using high-throughput RNA sequencing, we investigate the dynamics of gene expression throughout development, spanning from early embryo to froglet stages. Our results show that sex-biased expression affects different genes at different developmental stages and increases during development, reaching highest levels in XX female froglets. Additionally, sex-biased gene expression depends on phenotypic, rather than genotypic sex, with similar expression in XX and XY males; correlates with gene evolutionary rates; and is not localized to the proto-sex chromosome nor near the candidate sex-determining gene Dmrt1. The proto-sex chromosome of common frogs does not show evidence of sexualization of gene expression, nor evidence for a faster rate of evolution. This challenges the notion that sexually antagonistic genes play a central role in the initial stages of sex-chromosome evolution

    The molecular ecology of Microcystis sp. blooms in the San Francisco Estuary

    Get PDF
    Harmful blooms of the cyanobacterium Microcystis sp. have become increasingly pervasive in the San Francisco Estuary Delta (USA) since the early 2000s and their rise has coincided with substantial decreases in several important fish species. Direct and indirect effects Microcystis blooms may have on the Delta food web were investigated. The Microcystis population was tracked for 2 years at six sites throughout the Delta using quantitative PCR. High-throughput amplicon sequencing and colony PCR sequencing revealed the presence of 10 different strains of Microcystis, including 6 different microcystin-producing strains. Shotgun metagenomic analysis identified a variety of Microcystis secondary metabolite pathways, including those for the biosynthesis of: aeruginosin, cyanopeptolin, microginin, microviridin and piricyclamide. A sizable reduction was observed in microbial community diversity during a large Microcystis bloom (H′ = 0.61) relative to periods preceding (H′ = 2.32) or following (H′ = 3.71) the bloom. Physicochemical conditions of the water column were stable throughout the bloom period. The elevated abundance of a cyanomyophage with high similarity to previously sequenced isolates known to infect Microcystis sp. was implicated in the bloom's collapse. Network analysis was employed to elucidate synergistic and antagonistic relationships between Microcystis and other bacteria and indicated that only very few taxa were positively correlated with Microcystis

    The Detection of Incipient Caries with Tracer Dyes

    Full text link
    The purpose of this study was to determine the increase in color contrast produced by the use of a tracer dye in detection of incipient caries lesions with transillumination. Twenty four caries-free first premolars were immersed in an acid gelatin for production of artificial incipient caries lesions. After the lesions had developed, these teeth were photographed by transillumination. Two photographs were taken of each tooth. The first photograph showed the lesion without dye. A blue tracer dye was then added and absorbed by the lesion, and a second photograph was taken. The data on the color difference were obtained by use of a reflectance colorimeter and showed a four-fold increase between the lesion and surrounding area with the dye. A two-way analysis of variance was used for the statistical interpretation. The color difference between the lesion without the dye and then with the dye was significant. The use of the blue tracer dye, therefore, significantly increased the contrast in the images of the artificial incipient lesions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68289/2/10.1177_00220345890680021101.pd

    Exquisite sensitivity of the ligand field to solvation and donor polarisability in coordinatively saturated lanthanide complexes

    Get PDF
    Crystallographic, emission and NMR studies of a series of C3-symmetric, nine-coordinate substituted pyridyl triazacyclononane Yb(III) and Eu(III) complexes reveal the impact of local solvation and ligand dipolar polarisability on ligand field strength, leading to dramatic variations in pseudocontact NMR shifts and emission spectral profiles, giving new guidance for responsive NMR and spectral probe design

    Living for the weekend: youth identities in northeast England

    Get PDF
    Consumption and consumerism are now accepted as key contexts for the construction of youth identities in de-industrialized Britain. This article uses empirical evidence from interviews with young people to suggest that claims of `new community' are overstated, traditional forms of friendship are receding, and increasingly atomized and instrumental youth identities are now being culturally constituted and reproduced by the pressures and anxieties created by enforced adaptation to consumer capitalism. Analysis of the data opens up the possibility of a critical rather than a celebratory exploration of the wider theoretical implications of this process

    Trans-generational transmission of the Glossina pallidipes hytrosavirus depends on the presence of a functional symbiome

    Get PDF
    The vertically transmitted endosymbionts (Sodalis glossinidius and Wigglesworthia glossinidia) of the tsetse fly (Diptera: Glossinidae) are known to supplement dietary deficiencies and modulate the reproductive fitness and the defense system of the fly. Some tsetse fly species are also infected with the bacterium, Wolbachia and with the Glossina hytrosavirus (GpSGHV). Laboratory-bred G. pallidipes exhibit chronic asymptomatic and acute symptomatic GpSGHV infection, with the former being the most common in these colonies. However, under as yet undefined conditions, the asymptomatic state can convert to the symptomatic state, leading to detectable salivary gland hypertrophy (SGH+) syndrome. In this study, we investigated the interplay between the bacterial symbiome and GpSGHV during development of G. pallidipes by knocking down the symbionts with antibiotic. Intrahaemocoelic injection of GpSGHV led to high virus titre (109 virus copies), but was not accompanied by either the onset of detectable SGH+, or release of detectable virus particles into the blood meals during feeding events. When the F1 generations of GpSGHV-challenged mothers were dissected within 24 h post-eclosion, SGH+ was observed to increase from 4.5% in the first larviposition cycle to >95% in the fourth cycle. Despite being sterile, these F1 SGH+ progeny mated readily. Removal of the tsetse symbiome, however, suppressed transgenerational transfer of the virus via milk secretions and blocked the ability of GpSGHV to infect salivary glands of the F1 progeny. Whereas GpSGHV infects and replicates in salivary glands of developing pupa, the virus is unable to induce SGH+ within fully differentiated adult salivary glands. The F1 SGH+ adults are responsible for the GpSGHV-induced colony collapse in tsetse factories. Our data suggest that GpSGHV has co-evolved with the tsetse symbiome and that the symbionts play key roles in the virus transmission from mother to progeny
    corecore