31 research outputs found

    Trace amine receptor in GtoPdb v.2023.1

    Get PDF
    Trace amine-associated receptors were discovered from a search for novel 5-HT receptors [9], where 15 mammalian orthologues were identified and divided into two families. The TA1 receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Trace amine receptor [58]) has affinity for the endogenous trace amines tyramine, β-phenylethylamine and octopamine in addition to the classical amine dopamine [9]. Emerging evidence suggests that TA1 is a modulator of monoaminergic activity in the brain [94] with TA1 and dopamine D2 receptors shown to form constitutive heterodimers when co-expressed [30]. In addition to trace amines, receptors can be activated by amphetamine-like psychostimulants, and endogenous thyronamines

    Trace amine receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Trace amine-associated receptors were discovered from a search for novel 5-HT receptors [9], where 15 mammalian orthologues were identified and divided into two families. The TA1 receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee for the Trace amine receptor [53]) has affinity for the endogenous trace amines tyramine, β-phenylethylamine and octopamine in addition to the classical amine dopamine [9]. Emerging evidence suggests that TA1 is a modulator of monoaminergic activity in the brain [90] with TA1 and dopamine D2 receptors shown to form constitutive heterodimers when co-expressed [28]. In addition to trace amines, receptors can be activated by amphetamine-like psychostimulants, and endogenous thyronamines

    Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium

    Get PDF
    © Springer Nature Limited 2022. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1038/s41569-021-00665-7Coronavirus disease 2019 (COVID-19) predisposes patients to thrombotic and thromboembolic events, owing to excessive inflammation, endothelial cell activation and injury, platelet activation and hypercoagulability. Patients with COVID-19 have a prothrombotic or thrombophilic state, with elevations in the levels of several biomarkers of thrombosis, which are associated with disease severity and prognosis. Although some biomarkers of COVID-19-associated coagulopathy, including high levels of fibrinogen and d-dimer, were recognized early during the pandemic, many new biomarkers of thrombotic risk in COVID-19 have emerged. In this Consensus Statement, we delineate the thrombotic signature of COVID-19 and present the latest biomarkers and platforms to assess the risk of thrombosis in these patients, including markers of platelet activation, platelet aggregation, endothelial cell activation or injury, coagulation and fibrinolysis as well as biomarkers of the newly recognized post-vaccine thrombosis with thrombocytopenia syndrome. We then make consensus recommendations for the clinical use of these biomarkers to inform prognosis, assess disease acuity, and predict thrombotic risk and in-hospital mortality. A thorough understanding of these biomarkers might aid risk stratification and prognostication, guide interventions and provide a platform for future research.Peer reviewe

    A history of high-power laser research and development in the United Kingdom

    Get PDF
    The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years

    Adherence to extended postpartum antiretrovirals is associated with decreased breast milk HIV-1 transmission

    Get PDF
    Estimate association between postpartum antiretroviral adherence and breastmilk HIV-1 transmissio

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Recovery of platelet reactivity following cessation of either aspirin or ticagrelor in patients treated with dual antiplatelet therapy following percutaneous coronary intervention: a GLOBAL LEADERS substudy

    No full text
    Cessation of one component of dual antiplatelet therapy (DAPT) following percutaneous coronary intervention (PCI) has been associated with increased risk of ischemic events but it is uncertain whether discontinuation of aspirin is preferable to discontinuation of the oral P2Y12 inhibitor. The GLOBAL LEADERS study compared two antiplatelet strategies following PCI, cessation of aspirin at 1 month with continued ticagrelor monotherapy for 23 months versus standard DAPT for 12 months followed by aspirin monotherapy for a further 12 months. We assessed recovery of platelet reactivity after withdrawal of either aspirin or ticagrelor at 1 month and 12 months, respectively, in this study. Platelet aggregation (PA) was assessed before cessation of DAPT (‘baseline’) and after 2, 7, and 14 days post-cessation using Multiplate whole-blood aggregometry with collagen, thrombin-receptor-activating peptide (TRAP), adenosine diphosphate (ADP) and arachidonic acid (AA) as agonists. Following cessation of aspirin at 1 month, there was marked recovery of PA induced by AA (baseline [mean ± SD]: 11.1 ± 7.4 U vs. 14 days: 64.9 ± 19.6 U, p < .0001) and collagen (37.4 ± 22.9 U vs. 79.8 ± 13.8 U, p < .0001), whereas PA induced by ADP (18.6 ± 6.6 vs. 69.1 ± 20.5, p < .0001) and collagen (34.4 ± 18.7 U vs. 43.0 ± 21.0, p = .0018) recovered following cessation of ticagrelor at 12 months. There were no significant changes in TRAP-induced PA in either group. In conclusion, cessation of either component of DAPT leads to substantial increase in platelet reactivity with differential effects on different pathways of platelet activation when aspirin or the P2Y12 inhibitor is stopped. Further work is required to determine which patients receive net benefit from long-term continuation of DAPT

    Very-low-dose twice-daily aspirin maintains platelet inhibition and improves haemostasis during dual-antiplatelet therapy for acute coronary syndrome

    Get PDF
    Higher aspirin doses may be inferior in ticagrelor-treated acute coronary syndrome (ACS) patients and reducing bleeding risk whilst maintaining antithrombotic benefits could improve outcomes. We characterized the pharmacodynamics of a novel dual-antiplatelet-therapy regimen consisting of very-low-dose twice-daily (BD) aspirin with standard-dose ticagrelor. A total of 20 ticagrelor-treated ACS patients entered a randomized crossover to take aspirin 20 mg BD (12-hourly) during one 14-day period and 75 mg once-daily (OD) in the other. After 14 days of treatment, serum thromboxane (TX)B2 and light-transmittance aggregometry were assessed pre- and 2 h post-morning-dose, bleeding time was measured post-dose, and TXA2 and prostacyclin stable metabolites were measured in urine collected 2 h post-morning-dose. Data are expressed as mean ± SD. After 14 days treatment, serum TXB2 levels were significantly greater 2 h post-dosing with aspirin 20 mg BD vs. 75 mg OD (3.0 ± 3.6 ng/mL vs. 0.8 ± 1.9 ng/mL; p = 0.018) whereas pre-dosing levels were not significantly different (3.5 ± 4.1 ng/mL vs. 2.5 ± 3.1 ng/mL, p = 0.23). 1-mmol/L arachidonic acid-induced platelet aggregation was similarly inhibited by both regimens pre-dose (8.5 ± 14.3% vs. 5.1 ± 3.6%, p = 0.24) and post-dose (8.7 ± 14.2% vs. 6.6 ± 5.3%; p = 0.41). Post-dose bleeding time was shorter with 20 mg BD (680 ± 306 s vs. 834 ± 386 s, p = 0.02). Urinary prostacyclin and TX metabolite excretion were not significantly different. In conclusion, compared to aspirin 75 mg OD, aspirin 20 mg BD provided consistent inhibition of platelet TXA2 release and aggregation, and improved post-dose hemostasis, in ticagrelor-treated ACS patients. Further studies are warranted to assess whether this regimen improves the balance of clinical efficacy and safety
    corecore