2,626 research outputs found

    Anisotropic strains, metal-insulator transition, and magnetoresistance of La0.7_{0.7}Ca0.3_{0.3}MnO3_{3} films

    Full text link
    Thin films of perovskite manganite La0.7_{0.7}Ca0.3_{0.3}MnO3_{3} were grown epitaxially on various substrates by either the pulsed laser deposition method or laser molecular beam epitaxy. The substrates change both the volume and symmetry of the unit cell of the films. It is revealed that the symmetry as well as the volume of the unit cell have strong influence on the metal-insulator transition temperature and the size of magnetoresistance.Comment: 6 pages, 3 figure

    Engineering de novo disulfide bond in bacterial alpha-type carbonic anhydrase for thermostable carbon sequestration

    Get PDF
    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial alpha-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 degrees C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.1194Ysciescopu

    Effect of amorphous Si quantum-dot size on 1.54 μm luminescence of Er

    Get PDF
    The role of the size of amorphous silicon quantum dots in the Er luminescence at 1.54 μm was investigated. As the dot size was increased, more Er ions were located near one dot due to its large surface area and more Er ions interacted with other ones. This Er-Er interaction caused a weak photoluminescence intensity, despite the increase in the effective excitation cross section. The critical dot size needed to take advantage of the positive effect on Er luminescence is considered to be about 2.0 nm, below which a small dot is very effective in the efficient luminescence of Er. © 2005 The Electrochemical Society. All rights reserved

    miR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression

    Get PDF
    Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type-1 (SCA1) neurodegenerative disease and some types of cancer; however, the role of CIC in prostate cancer remains unknown. Here we show that CIC suppresses prostate cancer progression. CIC expression was markedly decreased in human prostatic carcinoma. CIC overexpression suppressed prostate cancer cell proliferation, invasion, and migration, whereas CIC RNAi exerted opposite effects. We found that knock-down of CIC derepresses expression of ETV5 and CRABP1 in LNCaP and PC-3 cells, respectively, thereby promoting cell proliferation and invasion. We also discovered that miR-93, miR-106b, and miR-375, which are known to be frequently overexpressed in prostate cancer patients, cooperatively down-regulate CIC levels to promote cancer progression. Altogether, we suggest miR-93/miR-106b/miR-375-CIC-CRABP1 as a novel key regulatory axis in prostate cancer progression.113324Ysciescopu

    Egr-1 Activation by Cancer-Derived Extracellular Vesicles Promotes Endothelial Cell Migration via ERK1/2 and JNK Signaling Pathways

    Get PDF
    Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs), also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1) activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference-mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.open11617sciescopu

    Combined resistance and aerobic exercise training reduces insulin resistance and central adiposity in adolescent girls who are obese: randomized clinical trial

    Get PDF
    Introduction Exercise training is recommended for improving health and protecting against the development of metabolic and cardiovascular pathologies. Combined resistance and aerobic exercise training (CRAE) has been shown to provide unique benefits in older adults with cardiovascular diseases. Purpose We sought to determine the beneficial effects of CRAE in adolescent girls who are obese and hyperinsulinemic. Methods Forty adolescent girls who are obese (age 14.7 ± 1 years; BMI 30 ± 2) were randomly assigned to a “no exercise” (CON n = 20) or combined exercise group (EX n = 20). The EX group performed resistance and aerobic exercise for 12 weeks, 5 times per week. Exercise intensity was increased gradually, from 40 to 70% of heart rate reserve (HRR), every 4 weeks. The brachial-ankle pulse wave velocity (BaPWV), blood pressure (BP), heart rate (HR), blood leptin, adiponectin levels, and body composition were measured before and after the 12-week intervention. Results We observed that CRAE effectively reduced the body fat percentage, body weight, and waist circumference in the EX group (p \u3c 0.05). After 12 weeks of training, subjects in the CRAE group maintained appropriate leptin and adiponectin levels and showed positive improvements of blood insulin, glucose, and insulin resistance parameters relative to baseline and to the CON group (p \u3c 0.05). Conclusion CRAE is a useful therapeutic method to alleviate metabolic risk factors in adolescent girls who are obese and hyperinsulinemic

    Bulk properties of the van der Waals hard ferromagnet VI3

    Get PDF
    We present comprehensive measurements of the structural, magnetic, and electronic properties of layered van der Waals ferromagnet VI3 down to low temperatures. Despite belonging to a well-studied family of transition-metal trihalides, this material has received very little attention. We outline, from high-resolution powder x-ray diffraction measurements, a corrected room-temperature crystal structure to that previously proposed and uncover a structural transition at 79 K, also seen in the heat capacity. Magnetization measurements confirm VI3 to be a hard ferromagnet (9.1 kOe coercive field at 2 K) with a high degree of anisotropy, and the pressure dependence of the magnetic properties provide evidence for the two-dimensional nature of the magnetic order. Optical and electrical transport measurements show this material to be an insulator with an optical band gap of 0.67 eV - the previous theoretical predictions of d-band metallicity then lead us to believe VI3 to be a correlated Mott insulator. Our latest band-structure calculations support this picture and show good agreement with the experimental data. We suggest VI3 to host great potential in the thriving field of low-dimensional magnetism and functional materials, together with opportunities to study and make use of low-dimensional Mott physics

    μ-CS: An extension of the TM4 platform to manage Affymetrix binary data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A main goal in understanding cell mechanisms is to explain the relationship among genes and related molecular processes through the combined use of technological platforms and bioinformatics analysis. High throughput platforms, such as microarrays, enable the investigation of the whole genome in a single experiment. There exist different kind of microarray platforms, that produce different types of binary data (images and raw data). Moreover, also considering a single vendor, different chips are available. The analysis of microarray data requires an initial preprocessing phase (i.e. normalization and summarization) of raw data that makes them suitable for use on existing platforms, such as the TIGR M4 Suite. Nevertheless, the annotations of data with additional information such as gene function, is needed to perform more powerful analysis. Raw data preprocessing and annotation is often performed in a manual and error prone way. Moreover, many available preprocessing tools do not support annotation. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of microarray data are needed.</p> <p>Results</p> <p>The paper presents <it>μ</it>-CS (Microarray Cel file Summarizer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix binary data. <it>μ</it>-CS is based on a client-server architecture. The <it>μ</it>-CS client is provided both as a plug-in of the TIGR M4 platform and as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data, avoiding the manual invocation of external tools (e.g. the Affymetrix Power Tools), the manual loading of preprocessing libraries, and the management of intermediate files. The <it>μ</it>-CS server automatically updates the references to the summarization and annotation libraries that are provided to the <it>μ</it>-CS client before the preprocessing. The <it>μ</it>-CS server is based on the web services technology and can be easily extended to support more microarray vendors (e.g. Illumina).</p> <p>Conclusions</p> <p>Thus <it>μ</it>-CS users can directly manage binary data without worrying about locating and invoking the proper preprocessing tools and chip-specific libraries. Moreover, users of the <it>μ</it>-CS plugin for TM4 can manage Affymetrix binary files without using external tools, such as APT (Affymetrix Power Tools) and related libraries. Consequently, <it>μ</it>-CS offers four main advantages: (i) it avoids to waste time for searching the correct libraries, (ii) it reduces possible errors in the preprocessing and further analysis phases, e.g. due to the incorrect choice of parameters or the use of old libraries, (iii) it implements the annotation of preprocessed data, and finally, (iv) it may enhance the quality of further analysis since it provides the most updated annotation libraries. The <it>μ</it>-CS client is freely available as a plugin of the TM4 platform as well as a standalone application at the project web site (<url>http://bioingegneria.unicz.it/M-CS</url>).</p

    Mitochondria directly influence fertilisation outcome in the pig

    Get PDF
    The mitochondrion is explicitly involved in cytoplasmic regulation and is the cell's major generator of ATP. Our aim was to determine whether mitochondria alone could influence fertilisation outcome. In vitro, oocyte competence can be assessed through the presence of glucose-6-phosphate dehydrogenase (G6PD) as indicated by the dye, brilliant cresyl blue (BCB). Using porcine in vitro fertilisation (IVF), we have assessed oocyte maturation, cytoplasmic volume, fertilisation outcome, mitochondrial number as determined by mtDNA copy number, and whether mitochondria are uniformly distributed between blastomeres of each embryo. After staining with BCB, we observed a significant difference in cytoplasmic volume between BCB positive (BCB+) and BCB negative (BCB-) oocytes. There was also a significant difference in mtDNA copy number between fertilised and unfertilised oocytes and unequal mitochondrial segregation between blastomeres during early cleavage stages. Furthermore, we have supplemented BCB- oocytes with mitochondria from maternal relatives and observed a significant difference in fertilisation outcomes following both IVF and intracytoplasmic sperm injection (ICSI) between supplemented, sham-injected and non-treated BCB- oocytes. We have therefore demonstrated a relationship between oocyte maturity, cytoplasmic volume, and fertilisation outcome and mitochondrial content. These data suggest that mitochondrial number is important for fertilisation outcome and embryonic development. Furthermore, a mitochondrial pre-fertilisation threshold may ensure that, as mitochondria are diluted out during post-fertilisation cleavage, there are sufficient copies of mtDNA per blastomere to allow transmission of mtDNA to each cell of the post-implantation embryo after the initiation of mtDNA replication during the early postimplantation stages

    Anti-fouling graphene-based membranes for effective water desalination

    Get PDF
    © 2018 The Author(s). The inability of membranes to handle a wide spectrum of pollutants is an important unsolved problem for water treatment. Here we demonstrate water desalination via a membrane distillation process using a graphene membrane where water permeation is enabled by nanochannels of multilayer, mismatched, partially overlapping graphene grains. Graphene films derived from renewable oil exhibit significantly superior retention of water vapour flux and salt rejection rates, and a superior antifouling capability under a mixture of saline water containing contaminants such as oils and surfactants, compared to commercial distillation membranes. Moreover, real-world applicability of our membrane is demonstrated by processing sea water from Sydney Harbour over 72 h with macroscale membrane size of 4 cm 2 , processing ~0.5 L per day. Numerical simulations show that the channels between the mismatched grains serve as an effective water permeation route. Our research will pave the way for large-scale graphene-based antifouling membranes for diverse water treatment applications
    corecore