10 research outputs found

    Graphene-nanowire hybrid structures for high-performance photoconductive devices

    No full text
    Graphene-CdS nanowire (NW) hybrid structures with high-speed photoconductivity were developed. The hybrid structure was comprised of CdS NWs which were selectively grown in specific regions on a single-layer graphene sheet. The photoconductive channels based on graphene-CdS NW hybrid structures exhibited much larger photocurrents than graphene-based channels and much faster recovery speed than CdS NW network-based ones. Our graphene-CdS NW structures can be useful because they were much faster than commercial CdS film-based photodetectors and had photocurrents large enough for practical applications

    Graphene-nanowire hybrid structures for high-performance photoconductive devices

    No full text
    Graphene-CdS nanowire (NW) hybrid structures with high-speed photoconductivity were developed. The hybrid structure was comprised of CdS NWs which were selectively grown in specific regions on a single-layer graphene sheet. The photoconductive channels based on graphene-CdS NW hybrid structures exhibited much larger photocurrents than graphene-based channels and much faster recovery speed than CdS NW network-based ones. Our graphene-CdS NW structures can be useful because they were much faster than commercial CdS film-based photodetectors and had photocurrents large enough for practical applications.open112930sciescopu

    Graphene–nanowire hybrid structures for high-performance photoconductive devices

    No full text
    Graphene-CdS nanowire (NW) hybrid structures with high-speed photoconductivity were developed. The hybrid structure was comprised of CdS NWs which were selectively grown in specific regions on a single-layer graphene sheet. The photoconductive channels based on graphene-CdS NW hybrid structures exhibited much larger photocurrents than graphene-based channels and much faster recovery speed than CdS NW network-based ones. Our graphene-CdS NW structures can be useful because they were much faster than commercial CdS film-based photodetectors and had photocurrents large enough for practical applications.N
    corecore