10 research outputs found
Graphene-nanowire hybrid structures for high-performance photoconductive devices
Graphene-CdS nanowire (NW) hybrid structures with high-speed photoconductivity were developed. The hybrid structure was comprised of CdS NWs which were selectively grown in specific regions on a single-layer graphene sheet. The photoconductive channels based on graphene-CdS NW hybrid structures exhibited much larger photocurrents than graphene-based channels and much faster recovery speed than CdS NW network-based ones. Our graphene-CdS NW structures can be useful because they were much faster than commercial CdS film-based photodetectors and had photocurrents large enough for practical applications
Graphene-nanowire hybrid structures for high-performance photoconductive devices
Graphene-CdS nanowire (NW) hybrid structures with high-speed photoconductivity were developed. The hybrid structure was comprised of CdS NWs which were selectively grown in specific regions on a single-layer graphene sheet. The photoconductive channels based on graphene-CdS NW hybrid structures exhibited much larger photocurrents than graphene-based channels and much faster recovery speed than CdS NW network-based ones. Our graphene-CdS NW structures can be useful because they were much faster than commercial CdS film-based photodetectors and had photocurrents large enough for practical applications.open112930sciescopu
Additional file 1: of Bi-Assisted CdTe/CdS Hierarchical Nanostructure Growth for Photoconductive Applications
Supplementary figures (Figures S1âS6).(DOCX 763 kb
Graphene–nanowire hybrid structures for high-performance photoconductive devices
Graphene-CdS nanowire (NW) hybrid structures with high-speed photoconductivity were developed. The hybrid structure was comprised of CdS NWs which were selectively grown in specific regions on a single-layer graphene sheet. The photoconductive channels based on graphene-CdS NW hybrid structures exhibited much larger photocurrents than graphene-based channels and much faster recovery speed than CdS NW network-based ones. Our graphene-CdS NW structures can be useful because they were much faster than commercial CdS film-based photodetectors and had photocurrents large enough for practical applications.N