832 research outputs found
Gravin orchestrates protein kinase A and 2-adrenergic receptor signaling critical for synaptic plasticity and memory
A kinase-anchoring proteins (AKAPs) organize compartmentalized pools of protein kinase A (PKA) to enable localized signaling events within neurons. However, it is unclear which of the many expressed AKAPs in neurons target PKA to signaling complexes important for long-lasting forms of synaptic plasticity and memory storage. In the forebrain, the anchoring protein gravin recruits a signaling complex containing PKA, PKC, calmodulin, and PDE4D (phosphodiesterase 4D) to the β2-adrenergic receptor. Here, we show that mice lacking the α-isoform of gravin have deficits in PKA-dependent long-lasting forms of hippocampal synaptic plasticity including β2-adrenergic receptor-mediated plasticity, and selective impairments of long-term memory storage. Furthermore, both hippocampal β2-adrenergic receptor phosphorylation by PKA, and learning-induced activation of ERK in the CA1 region of the hippocampus are attenuated in mice lacking gravin-α. We conclude that gravin compartmentalizes a significant pool of PKA that regulates learning-induced β2-adrenergic receptor signaling and ERK activation in the hippocampus in vivo, thereby organizing molecular interactions between glutamatergic and noradrenergic signaling pathways for long-lasting synaptic plasticity, and memory storage
Neutron beam test of CsI crystal for dark matter search
We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear
recoils and 's below 10 keV. The response of CsI crystals to nuclear
recoil was studied with mono-energetic neutrons produced by the
H(p,n)He reaction. This was compared to the response to Compton
electrons scattered by 662 keV -ray. Pulse shape discrimination between
the response to these 's and nuclear recoils was studied, and quality
factors were estimated. The quenching factors for nuclear recoils were derived
for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM
The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout
A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built
as a shashlik lead-scintillator calorimeter with wave length shifter fiber
readout. Before installation it was tested and calibrated using the X5 test
beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in
the momentum range of 10 to 100 GeV/c were used. Results of these measurements
are presented as well as a calibration monitoring system based on a Co
source.Comment: 38 pages (Latex); 26 figures (ps
Performance of the CREAM calorimeter in accelerator beam test
The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of scintillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (\lambda int). The calorimeter was placed in one of CERN's SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results.The CREAM calorimeter, designed to measure the spectra of cosmic-ray nuclei from under 1 TeV to 1000 TeV, is a 20 radiation length (X0) deep sampling calorimeter. The calorimeter is comprised of 20 layers of tungsten interleaved with 20 layers of scintillating fiber ribbons, and is preceded by a pair of graphite interaction targets providing about 0.42 proton interaction lengths (\lambda int). The calorimeter was placed in one of CERN's SPS accelerator beams for calibration and testing. Beams of 150 GeV electrons were used for calibration, and a variety of electron, proton, and nuclear fragment beams were used to test the simulation model of the detector. In this paper we discuss the performance of the calorimeter in the electron beam and compare electron beam data with simulation results
Slewing Mirror Telescope and the Data-Acquisition System for the UFFO-Pathfinder
The Ultra-Fast Flash Observatory (UFFO) aims to detect the earliest moment of Gamma-Ray
Bursts (GRBs) which is not well known, resulting into the enhancement of GRB mechanism
understanding. The pathfinder mission was proposed to be a scaled-down version of UFFO,
and only contains the UFFO Burst Alert & Trigger Telescope (UBAT) measuring the
X-ray/gamma-ray with the wide-field of view and the Slewing Mirror Telescope (SMT) with a
rapid-response for the UV/optical photons. Once the UBAT detects a GRB candidate with the
position accuracy of 10 arcmin, the SMT steers the UV/optical photons from the candidate
to the telescope by the fast rotatable mirror and provides the early UV/optical photons
measurements with 4 arcsec accuracy. The SMT has a modified Ritchey-Chrètien telescope
with the aperture size of 10 cm diameter including the rotatable mirror and the image
readout by the intensified charge-coupled device. There is a key board called the UFFO
Data Acquisition system (UDAQ) that manages the communication of each telescope and also
of the satellite and the UFFO overall operation. This pathfinder is designed and built
within the limited size and weight of ~20 kg and the low power consumption up to
~30 W. We will discuss the design and performance of the UFFO-pathfinder, and its
integration to the Lomonosov satellite
Invariant higher-order variational problems II
Motivated by applications in computational anatomy, we consider a
second-order problem in the calculus of variations on object manifolds that are
acted upon by Lie groups of smooth invertible transformations. This problem
leads to solution curves known as Riemannian cubics on object manifolds that
are endowed with normal metrics. The prime examples of such object manifolds
are the symmetric spaces. We characterize the class of cubics on object
manifolds that can be lifted horizontally to cubics on the group of
transformations. Conversely, we show that certain types of non-horizontal
geodesics on the group of transformations project to cubics. Finally, we apply
second-order Lagrange--Poincar\'e reduction to the problem of Riemannian cubics
on the group of transformations. This leads to a reduced form of the equations
that reveals the obstruction for the projection of a cubic on a transformation
group to again be a cubic on its object manifold.Comment: 40 pages, 1 figure. First version -- comments welcome
Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts
One of the unexplored domains in the study of gamma-ray bursts (GRBs) is the early time
phase of the optical light curve. We have proposed Ultra-Fast Flash Observatory (UFFO) to
address this question through extraordinary opportunities presented by a series of small
space missions. The UFFO is equipped with a fast-response Slewing Mirror Telescope that
uses a rapidly moving mirror or mirror array to redirect the optical beam rather than
slewing the entire spacecraft or telescope to aim the optical instrument at the GRB
position. The UFFO will probe the early optical rise of GRBs with sub-second response, for
the first time, opening a completely new frontier in GRB and transient studies. Its fast
response measurements of the optical emission of dozens of GRB each year will provide
unique probes of the burst mechanism and test the prospect of GRB as a new standard
candle, potentially opening up the z > 10 universe. We describe the current limit in
early photon measurements, the aspects of early photon physics, our soon-to-be-launched
UFFO-pathfinder mission, and our next planned mission, the UFFO-100
Calibration and Simulation of the GRB trigger detector of the Ultra Fast Flash Observatory
The UFFO (Ultra-Fast Flash Observatory) is a GRB detector on board the Lomonosov
satellite, to be launched in 2013. The GRB trigger is provided by an X-ray detector,
called UBAT (UFFO Burst Alarm & Trigger Telescope), which detects X-rays from the GRB
and then triggers to determine the direction of the GRB and then alerts the Slewing Mirror
Telescope (SMT) to turn in the direction of the GRB and record the optical photon fluxes.
This report details the calibration of the two components: the MAPMTs and the YSO crystals
and simulations of the UBAT. The results shows that this design can observe a GRB within a
field of view of ±35° and can trigger in a time scale as short as 0.2 – 1.0 s
after the appearance of a GRB X-ray spike
Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts
- …
