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Abstract

Alcator C-Mod is a new tokamak under construction at M.I.T. that

promises to play an important and flexible role in the international fusion

research effort. The physics and engineering features of the tokamak are

described, giving an overview of the machine and plasma configurations. On the

basis of empirical scaling laws, we predict the plasma confinement performance

to be near DT equivalent breakeven. The planned experimental program is

addressed to many of the vital physics questions still uncertain in high-

performance tokamak plasma behaviour as well as to the investigation of

innovative approaches to tokamak improvement.
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1 Background

The high-field compact tokamak approach to plasma confinement has proven

to be extremely successful in obtaining hot, well confined plasmas in machines

of modest size and cost. Pioneered by Alcator A in the 1970s, and extended by

Alcator C and FT, this type of high-performance tokamak is firmly established

as an attractive device for pursuing plasma and fusion research into the

ignited regime. In many respects the proposed compact ignition tokamak (CIT)

experiment follows in this tradition.

Alcator C achieved a value of the product of density (ne) and energy

confinement time (rE) of about 8x10 M & 3 s. It was thus the first magnetic

confinement device to exceed the minimum value of the Lawson parameter

required for energy breakeven. Despite the many much larger tokamaks that are

now in operation, this achievement has been exceeded by only one experiment to
2

date

In the development of basic plasma understanding and of the ability to

predict tokamak behaviour, the Alcator devices have also been extremely

productive. Examples of discoveries that now influence the wider fusion effort
3

include the ohmic confinement "Alcator" and "NeoAlcator" scalings , the

influence of density-profile peaking on improving confinement 4 (p-mode), the
5

demonstration of noninductive current drive at high density , as well as

numerous other significant advances in knowledge and technique.

Despite its successful and productive past performance, Alcator C, like

Alcator A, was traditional in its design. It had a circular cross-section

plasma, its edge was defined by a solid limiter, and the level of auxilliary

heating was modest, less than the normal ohmic heating power. In addition,

because of their -monolithic Bitter-plate construction, Alcator A and C had

very limited port access. The small ports imposed severe constraints on the

flexibility and quantity of auxiliary heating, as well as the diagnostic

experiments. For these reasons, and because the configuration under

consideration for CIT demanded the exploration of other important issues, the

new experiment Alcator C-Mod was proposed.

Alcator C-Mod arose conceptually as a modification of the older machine,

Alcator C. However, it soon became clear that the most effective way to

achieve the aims of the experiment was to build an assembly that was almost
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entirely new, while utilizing the extensive ancillary equipment (prime power,

convertors, diagnostics, etc.) available from the Alcator C program. Alcator

C-Mod incorporates such modern tokamak design features as: shaped non-circular

plasma cross-section, a poloidal divertor configuration, and dominant (ICRF)

auxilliary heating. In addition the port access is greatly increased, allowing

direct personnel access to the interior of the vacuum vessel and hence much

greater flexibility in the internal hardware.

The Alcator C-Mod proposal (Oct 1985) provided detailed information on

the rationale, physics and engineering of the original experimental design; a

subsequent addendum (Apr 1986) describes the changes to that design that were

made to reduce its costs, in the face of U.S. fusion budget cuts. Since a year

elapsed before final approval for the construction was received (Apr 1987),

further evolution of the plans and refinement of the engineering are now being

incorporated into the experiment. It is the purpose of this report to describe

the machine that is now being built.

2 Objectives

Alcator C-Mod will serve in two main roles: first as a vehicle for

extending the plasma regimes and experimental capability of high-performance

tokamaks, enabling the exploration of new physics and engineering concepts and

the investigation of plasma performance in fusion plasmas; second as a

prototype for the CIT, of which Alcator C-Mod is in many respects a scaled

version. These two roles are complementary. The physics research program of

Alcator C-Mod is valuable in its own right, representing as it does the next

logical step in high-performance tokamak research. This program fits well with

the desire to support experimentally the design and physics of CIT, which

strongly influences C-Mod's configuration and experimental plan.

The specific objectives of the Alcator C-Mod project may be summarized

as follows:

Explore and assess the confinement performance of an ohmically heated

compact high-field tokamak with advanced shaping.

Evaluate ICRF performance at high density in a shaped, diverted high-

field tokamak and establish its applicability to ignition conditions.
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Study and optimize the operation of different divertor configurations at

high density, especially their influence on confinement, with multi-

megawatt auxilliary heating.

Investigate the viability of control of the profiles of density (via

pellets), temperature and current profile (via RF), together with plasma

shaping and edge and impurity control (divertor) for enhanced stability

and confinement.

Ohmic ignition in a tokamak is an objective that has received renewed

interest recently , in part because of the observed degradation of confinement

with auxilliary heating power. However, major uncertainties exist in the

anticipated confinement at the high densities and currents necessary, as well

as in the extent of improvement possible through plasma shaping. Alcator C-Mod

can contribute to the knowledge and understanding necessary to judge the.

feasibility of ohmic ignition.

Heating in the Ion Cyclotron Range of Frequencies (ICRF) is currently

the planned heating scheme for CIT. It has many potential advantages over

Neutral Beam Injection heating; however there is very little experience of its

operation in high-density tokamaks. Alcator C-Mod offers the opportunity of

testing both the physics and the engineering of ICRF heating in the parameter

regimes relevant to compact ignition devices.

In recent years it has become clear9 that edge plasma conditions can

have a strong influence on the bulk confinement performance of tokamaks. Also,

the power densities required in compact fusion devices set a high priority on

obtaining control of the plasma-wall interactions so as to minimize their

deleterious effects. Alcator C-Mod will be the first tokamak capable of

operation with electron densities substantially above 1020 m_ in a divertor

configuration. It will thus provide information of great importance to future

ignition devices.

An ongoing theme for future tokamak development is likely to be

control. Alcator C-Mod will be able to extend the investigation of density

profile control with pellets and pursue the optimization of other shape and

profile parameters as well as developing practical techniques for their

control.
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3 Alcator C-Mo Design Parameters.

The basic plasma design parameters of Alcator C-Mod are shown in Table

1.

Table 1. Alcator C-Mod Parameters.

Major Radius R - 0.665 m.

Minor Radius a - 0.21 m.

Toroidal Field BT - 9 T.

Plasma Current I - 3 MA.

Elongation X - 1.8 (typical).

Triangularity 6 - 0.4 (typical).

Flat-top Duration 1 s (@ 9T)

7 s (@ 5T)

Inductive Volt-seconds 7.5 Wb.

Required energy 500 MJ.

These parameters constitute perhaps the highest performance machine consistent

with the available pulsed energy from Alcator's alternator. They are made

possible together with the improved port access by the design concepts

illustrated in the overall machine drawings Figs. 1 and 2.

The toroidal field (TF) magnet is constructed from twenty discrete

rectangular coils, each having six turns, which have sliding joints at each

corner. The magnetic loads on these coils are taken by a massive stainless

steel support structure surrounding the magnet assembly. The poloidal field

coils (except for-one pair) are inside the TF. They are responsible for the

combined tasks of providing inductive current-drive, plasma equilibrium and

plasma shaping. They are mounted on the stainless steel vacuum vessel, which

is thus a structural element as well as the primary vacuum chamber. All the

magnets are copper, cooled to liquid nitrogen temperature prior to a plasma

shot. A cryogenic dewar surrounds the whole machine.
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4 Toroidal Field Engineering

4.1 Sliding Joints

The sliding joints for the TF magnets have proven to be an ambitious

engineering development program for Alcator C-Mod. These joints must be

capable of high current densities, while undergoing substantial deflections

under coil in-plane and out-of-plane loads. The overall joint and TF magnet

assembly concepts are shown in Fig. 3. The current-joint specifications and

loads are shown in Table 2.

Table 2. Sliding Joint Specifications.

Number of joints 480

Current per turn 0.25 MA

Average face current density 20 MA m-2

Peak face current density 43 MA m-2

Maximum allowed surface resistance 1 nO m 2

Relative vertical sliding movement ±1 mm

Relative radial sliding movement 0.5 mm

Number of cycles 50000.

Early tests on sliding joint concepts identified surface preparations

with excellent resistivity and wear properties. However, the addition of.

coatings to broad copper fingers failed in full-scale joint tests because of

the inability to _achieve uniform contact over a broad area in a practical

assembly. Multilams have been used with other jointed designs to provide

multiple contacts over a broad area, but because of the long length of the

lams, they have an intrinsically high resistance. Various multilam materials

and shapes were tested. The current density was extended considerably over

previous benchmarks, but the concept was marginal for C-MOD.

Feltmetal pads were identified as a new concept that combined the best

features of flat plates and multilams. There are numerous contacts at the felt

pad surfaces, but the underlying matrix is tough and has high conductivity.
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Separate spring plates provide a preload pressure between the faces of 2.75

MPa, while allowing normal displacements up to 0.3mm without losing

electrical contact. The joints are also designed to allow the calculated

relative sliding movements of 1 mm verically and 0.5 mm radially. Extensive

testing of feltmetal sliding joints have shown them to be well able to meet

the specifications for performance and durability, provided that sufficient

face pressure is maintained. An analysis of stresses, displacements, current

and temperature distribution in the finger region led to shaping of the

fingers and feltmetal pads, as shown in Fig. 4. The fingers have been tapered

to allow the contacts to follow out-of-plane displacements instead of rocking

about the edge of the contact area. The feltmetal contacts were reduced to

four pads, instead of covering the entire available contact surface, in order

to ensure good contact in the leading edge region where the joint current is

concentrated.

4.2 TF Central Column.

The inside legs of the 120 turns in the TF magnet are wedge-shaped

vertical plates, bonded into a monolithic central colum. This assembly

supports the radial centering loads on the TF magnets through wedging, and

supports a fraction of the vertical loads through tension.

Without reinforcement, the combined loads on the plates would cause a

stress intensity at the inner bore region exceeding copper yield strength.

Steel plates between the wedge-shaped copper half-conductors prevent the

copper from yielding. The reinforcement plates are extended on the inside to

serve double duty as cooling fins. The wedged conductors are C-10700 copper,

bonded to flat 216 stainless-steel plates, with an average 4:1

copper/reinforcement ratio over the central column area. The yield strength

of the copper is 310 MPa, up to 100 0C, while the yield strength of the steel

plates is 1200 MPa. The peak Tresca stress on the steel at the inside radius

is calculated to be 580 MPa, while that in the copper is 310 MPa. This type of

laminated structure was found to perform very well on Alcator C.

4.3 External Superstructure

Because of the sliding joints, the forces on the TF magnets, other than
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those on the central column, must be supported by an external stainless steel

superstructure. Vertical forces on the TF horizontal legs are supported by

the top and bottom domes. Out-of-plane loads are transmitted to wedge plates,

between the horizontal legs of the TF coils. The domes and wedge plates are
both bolted to an outer structural cylinder that supports vertical and out-of-

plane loads through the bolted connections, and also directly supports the

outward radial loads on the outer vertical legs of the TF magnet. These

structures are illustrated in Figs. 1 and 2.

Each of the two domes is machined from a single 26 tonne 316 LN forging.

The domes are sufficiently thick to support the distributed vertical load from

the TF magnet legs in bending without approaching static allowables, so that

cyclic loading governs the design. The highest stress in the cover is 370 MPa

at the vertical port apertures. The machine will be inspected every 12-

15,000 full-field cycles. Assuming initial cracks of 2.5 mm, a safety factor

of five against crack growth to 25 mm was calculated.

The stresses in the outer cylinder are generally lower than those in the

domes. However, vertical forces are transmitted from the dome to the cylinder

through vertical draw bars, pinned horizontally to the cylinder. The highest

local stress anywhere in the superstructure is at the pin holes of the

drawbars. The draw bars are made of high strength Inconel 718, so that this

region is less limiting than the port cutouts in the domes.

5 Poloidal Field Coil System

The poloidal field coil system may be thought of as consisting of the

ohmic heating (OH) primary coil and the equilibrium field (EF) coils. Actually

the roles of the coils are a mixture of these functions but we refer to the

central solenoid as the OH coil and to the others as the EF coils, reflecting

their dominant assignments.

The central solenoid consists of three independently controllable coils:

OH1, OH2-upper, and OH2-lower. As illustrated in Fig. 5, OHl is a notched coil

which extends the full height of the stack but has the full thickness only in

the central one third of the height. It is wound in place on the central core

of the TF from continuous solid copper conductor. This necessitates certain

cross-over windings between layers which complicate the coil design somewhat.

The OH2 sections fill in the remaining volume to make up a complete solenoid
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whose current density profile can be varied even though the leads to the

separate sections need to connect only to the ends of the solenoid. The whole

coil is cooled by liquid nitrogen forced through passages on the inner and

outer faces.

The coils EF1-3 are the main coils responsible for plasma equilibrium

and shaping. They are supported directly from the thick vacuum vessel (see Fig

2.). A smaller coil, EFC, is used for fast control of the plasma vertical

position which otherwise experiences an axisymmetric instability. An

additional coil EF4 is mounted outside the cylinder of the superstructure. It

gives added flexibility to the plasma shapes and field gradients available.

However, because of the slow penetration of the fields through the structure,

its current can only be changed relatively slowly, on a timescale -200 ms.

6 Vacuum Vessel and Wall Hardware

The vacuum vessel is a thick, welded 304L stainless steel structure, as

illustrated in Fig.6. It is designed to support all the loads generated by

currents in the poloidal field windings and in the vessel itself, under normal

operating conditions and during disruptions. The current decay rate assumed

for the disruptions is 1MA/ms, which induces very large currents in the

vessel. The use of a thick, rather low resistance, vessel is something of a

departure from past tokamak practice. Previous machines have minimised the

shorting effect of a conducting vessel either by adopting a thin bellows con-

struction, to increase resistance, or by introducing an insulating break in

the vessel. In Alcator C-Mod neither of these expedients is adopted since they

would preclude the use of the vessel as a key structural element. Instead, the

large toroidal vessel current ( perhaps as much as 0.4 MA during breakdown)

will be tolerated and the perturbing poloidal fields will be compensated by

control of the winding currents.

The horizontal access ports are 0.20m wide and 0.63m high, allowing

direct personnel access to the interior. The ports prove to be an area to

which special engineering attention must be paid. The non-axisymmetric

currents which flow in the vessel past the ports induce large magnetic forces

there. Also the penetration of the ports through the superstructure cylinder

requires demountable connections inside the cylinder for assembly. These large

connections have to withstand the thermal cycling (possibly to liquid nitrogen
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temperatures), and eddy current forces, without leaks.

The surfaces directly in contact with the plasma edge, the inner bumper

limiter and the divertor plates, are protected by tiles. The peak heat load on

the tiles due to plasma interaction is estimated to be about 10 MW/m2 , under

normal operation, which includes a factor of 2 enhancement due to incomplete

toroidal symmetry. However, during disruptions the power density may reach

1000 MW/M2 which will undoubtedly cause evaporation of whatever material is

used. As materials, molybdenum and graphite have been used in comparable

situations in previous experiments. They are both able to withstand the normal

heat load without damage. Both are under active consideration.

The hardware is designed so that by making the separatrix scrape off

into the bottom of the machine a "closed" divertor configuration is obtained,

maximizing the trapping of neutral particles in the divertor chamber. However,

the top of the machine allows an "open" divertor configuration, so comparison

of the performance of different configurations can be made without internal

hardware changes. Particularly in the closed configuration, the pumping

requirements for the divertor chamber are anticipated to be very large, as

high as 10 1s". Zirconium-Aluminum or similar getter panels are under

consideration for this pumping since the conductance of the vertical ports is

relatively small, their size being limited by the toroidal field coil and

superstructure dome.

During plasma pulses, recycled gas in the vacuum chamber can be expected

to raise the pressure as high as perhaps 0.01 mbar near scrape-off hardware.

However, to ensure maximum plasma purity, the base pressure of the vacuum

system when not operating plasmas is in the UHV range (typically < 10 bar).

Internal components are specified for outgassing so that this base pressure

can be achieved with the anticipated 1000 1/s pumping speed of the

turbomolecular pumps. Baking of the vessel to 150 0C is specified to assist in

initial outgassing, and further cleaning of exposed surfaces prior to plasma

operation will be performed with glow- and repetitive pulse-discharge

cleaning.

7 Control System and Data Acquisition

Control of the various subsystems of the machine will be through a

number of elements: transducers, programmable logic controllers (PLCs), CAMAC
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equipment, hardwired circuits, and user terminals.

For slow monitoring and control the PLCs provide excellent multipurpose

interfaces between the distributed intelligence network and the hardware under

control. Approximately 3000 control/monitor points will be serviced by about

15 PLCs. The advantages of such an approach include: cleaner layout and

reduced wiring, modularity and redundancy, ease of documentation, maintenance

and expansion, and versatile fault handling. The PLCs can communicate directly

with one another via a peer link but main high-level communication will be via

a networked set of processors, probably IBM PC type.

For sequencing and wave-form generation, CAMAC bus and microVax units

will be used. This approach allows much faster programming than the PLCs and

draws on experience gained with data acquisition hardware and software in

similar configurations.

The real-time feedback control of the plasma, for example its position,

current shape and so on, will be accomplished using a hybrid analog/digital

system. This will consist of a large (up to 50x10) matrix whose coefficients

are programmable digitally. The matrix can be updated -500 times during the

course of the plasma shot, at a minimum update time of approximately lms.

Inputs from the numerous plasma sensors are multiplied by this matrix to give

derived plasma quantities which can then be passed through programmable PID

controllers and a further similar matrix multiplication stage to provide

demand signals for power supplies etc. The resulting system is extremely fast

in its response to plasma changes because the multiplications are analog,

capable of responding on the microsecond timescale. It is also very flexible

because of the ability to program arbitrarily the control matrices.

Anticipated needs for data acquisition during the operation of the

experiment are approximately 10 Mbytes per shot in 1000 channels. This will

employ a variety of different acquisition hardware units operated through

CAMAC, controlled by a VAX8350 via an optically linked serial highway.

Additional cpu power will be available in clustered VAXstations. Data will be

stored on a farm of disks using an expanded version of MDS, the model data

system developed at MIT. A heirachical data structure will provide ready

access to data via the main servers. Much of the user analysis will be done on

individual VAXstations. The solutions adopted for the Alcator C-Mod data

system are part of a collaborative effort with Los Alamos National Laboratory

and the Istituto Gas Ionizzati, Padova (Italy).
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8 Power Supplies

The peak power demand of Alcator C-MOD will approach 400 MVA, with

roughly 500 MJ delivered energy per pulse. Nearly half of this energy is

stored in the toroidal magnetic field of the machine.

The prime power source is a 225 MVA turbine generator built in 1952.

After 25 years of service for Consolidated Edison, the unit was retired and

donated to MIT. During the period 1978-1987, the alternator supplied over

100,000 power pulses to Alcator C with only 3 days unscheduled outage. The

alternator is driven by a 2000 horsepower wound-rotor induction motor and

stores 530 MJ at 1800 rpm in the 120-ton rotor.

The higher power and energy requirements of Alcator C-MOD require

significant changes in the alternator. A flywheel weighing about 80 tons will

be installed to increase the stored energy. An extensive inspection of the

rotor and stator will be undertaken. If necessary, cracks in the rotor bore

will be machined out and the stator end turns will be braced to assure

adequate safety factors for the proposed duty. A comprehensive monitoring and

inspection program will be implemented to assure the continued integrity of

the alternator.

The toroidal field power supply converter uses a tapped transformer and

2 thyristor bridges to implement a sub-cycle load tap changer and reduce peak

power demand to the alternator. At low currents, the bridge connected to the

high-voltage tap provides all the DC current. As the AC current flow from the

alternator approaches a pre-set limit (roughly equal to the full-load current

rating of the alternator) the high-voltage bridge is phased back and the DC

load current is commutated to the low-voltage bridge. At full DC current of

250 KA, the high-voltage bridge is entirely off. Since the low-voltage bridge

demands only 1/2 the AC line current as the high-voltage bridge, the

alternator power demand is greatly reduced. This scheme reduces the stresses

in the alternator while forcing the TF magnet current up and down quickly so

as to minimize dissipated energy and recool time between pulses.

The poloidal field power converters total over 200 MVA. In order to

allow flexible plasma shaping and position control, most coils have separate

converters. All but the fast vertical position converter will be conventional
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6 or 12-pulse line-commutated units. The vertical position coils require a

switchmode converter with a full-power bandwidth of roughly 1 KHz.

9 MHD Configuration

A major advance over the previous Alcator C that C-Mod represents is the

ability to study shaped plasma cross-sections. The production of these shapes

is, of course, the function of the poloidal field system. Extensive explora-

tion of possible coil configurations, using codes that solve numerically the

MHD equilibrium equations of the plasma for specified coil currents and

positions, have led to the final coil design. This design represents a trade-

off between the desire for flexibility and the necessity to operate at high

currents. Flexibility is generally improved by having more coil sets in

different locations. High-current performance is generally favoured by having

fewer, larger coils and minimizing the extent to which neighbouring coil

currents oppose one another. The coil set chosen is judged, on the basis of

our code studies, to represent a good compromise.

The equilibrium that we take as standard is illustrated in Fig. 7. It

has a current of 3 MA at a toroidal field of 9 T. Qualitatively, the currents

in the OH coil determine the flux swing that drives the plasma current. For

full-performance cases such as that illustrated, the OH transformer currents

are swung from maximum forward to maximum reverse during the course of the

plasma shot. The limits are imposed essentially by the magnetic stresses in

the coil. At the instant depicted in Fig. 7 there is a significantly larger

(negative) current in the OHl than OH2. This has an important effect on the

plasma shape, helping to "push" on the midplane. Together with the "pull" that

the positive currents in EF1, and to a lesser extent EF2, exert on the plasma,

these currents cause the plasma to become vertically elongated, as shown. EF3

and EF4 contribute somewhat to the shaping but their major role is to provide

the vertical field that gives a force in the major radial direction to balance

the tendency of the plasma to expand. Coils EFl and EF3 are, in some

configurations, close to stress limits. Also their temperature rise during a

pulse can be very significant, as much as 200 0C.

The profiles of toroidal current density and safety factor, q, for this

standard equilibrium are shown in Fig. 8. The equilibrium is deliberately
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constrained to have q-l on axis. Its value at the 95% flux surface is about

2.3. The current profile is not unduly flat for this beta value (PP-0.3), the

pressure profile has been taken as

e~-[ 1 + ((-X)a -e

a(e- - 1)

where 4 - ( 40' O)/(4 e-0) is the normalized poloidal flux, and the profile

parameter, a, is equal to -2.37.

The up-down asymmetry in currents deliberately introduced in Fig. 7

gives rise to a single-null divertor configuration, in which the flux surfaces

scrape off into the bottom divertor chamber. As well as being able to invert

the asymmetry and run upper-divertor plasmas, the plasma can be run with a

symmetric double-null divertor, as illustrated in Fig. 9.

We anticipate that the plasma will be initiated as a near-circular

cross-section and grown to the final shape as the pulse evolves and the plasma

current rises. In Fig. 9 is shown the sequence of shapes obtained during a

simulation of the current rise calculated with the combined equilibrium-

transport code TSC10 . The corresponding evolution of the main plasma

parameters is shown in Fig. 10. Simulations such as this also take account of

the axisymmetric eddy currents in the vacuum vessel and demonstrate the

ability of the coil set to provide appropriate control even in the presence of

the conducting structures.

An issue of special concern is the provision of an adequate field null

at the time of breakdown, together with sufficient toroidal loop voltage to

cause ionization and current rise. An electromagnetic model of the entire

machine including the superstructure, illustrated in Fig. 11, has been used to

demonstrate the feasibility of obtaining an appropriate field null with

gradient no more than 0.01 T/m, and favourable evolution, in the presence of a

loop voltage of as- much as 20 V at the plasma.

The vertical elongation inevitably induces an axisymmetric instability

consisting of a vertical motion of the plasma. The conducting structures

around the plasma, notably the vacuum vessel, suppress this instability so

that it no longer takes place on the Alfven timescale ( typically submicro-

second). However the finite resistivity of the vessel allows the instability

to proceed on the much slower timescale of the resistive decay of the eddy

currents in the vessel. In order to stabilize the mode entirely, a feedback-

control system must be implemented which senses the plasma position and
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applies an appropriate horizontal field to hold its vertical position. Since

Alcator C-Mod has substantial elongation, comparable to the maximum

demonstrated in past tokamaks, extensive studies have been undertaken to

verify the stabilizing scheme. The model used 1 . is one in which the plasma is

represented by a set of current filaments and the vessel is approximated by a

discrete set of conductors. The results show that effective stabilization is

possible for elongations up to -2.1 provided that a rather fast control system

and power supply (response time < -0.5 ms) is used.

10 Radio Frequency Heating

The use of wave heating in the Ion Cyclotron Range of Frequencies is

attractive for the high density plasmas needed for fusion ignition because the

more widely studied neutral beam heating suffers severe difficulties both in

access to the plasma and in penetration to its center. By contrast ICRF has

more compact plasma-access requirements, has no known relevant density

limitation as such, and can in principle control the location of the power

deposition relatively straightforwardly. Its major difficulty is that it does

require a launching antenna very close to the edge of the plasma. Moreover,

the experimental experience with ICRF, especially at high magnetic fields and

densities is rather limited. This, of course, is one reason for the importance

of the Alcator C-Mod experiments.

The ICRF heating plans for Alcator C-Mod take advantage of the

availability of surplus (FMIT) RF generating units that can be upgraded at

moderate cost to provide 2 MW each at a frequency of 80 MHz. MIT is currently

funded to upgrade two of these units, although two more are available and

should provide a valuable extension in the scope of the program. The waves

launched damp on specific species in the plasma close to certain harmonics of

the ion cyclotron frequencies. In Fig. 12 are shown the relevant resonances as

functions of magnetic field. This graph shows that Alcator C-Mod can undertake

fast-wave heating experiments on Helium-3 (He3 ) minority species in deuterium

(D) plasmas at about 8 T magnetic field, hydrogen (H) minority in deuterium at

5 T, and Ion Bernstein Wave (IBW) heating at 3/2 times the deuteron cyclotron

frequency at 7 T. These are the main schemes planned. They require operation

with deuterium which adds to the project cost because, at the anticipated

temperatures and densities, the neutron emission from DD fusion reactions
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demands an experimental cell with substantial shielding. Nevertheless the

versatility afforded by deuterium operation and the ability to explore D(He 3 )

heating, which is analogous to schemes under consideration for CIT, justifies

the expense.

The configuration of the proposed fast-wave antenna within Alcator C-Mod

is illustrated in Fig. 13. Major concerns for the antenna design include: wave

spectrum launched, wave coupling through the edge plasma, avoidance of arcing

in antenna or feedlines, and use of a Faraday shield to provide the optimum

wave polarization and prevent direct plasma contact to the current strap.

Areas of specific interest in the context of compact, high performance

tokamaks include the forces induced in the antenna structure at disruptions,

the limits on power density that can be launched (up to 2 kW/cm2 is planned),

and impurity generation during fast-wave heating. The Ion Bernstein wave must

be launched with electric field parallel to the magnetic field, rather than

perpendicular to it as with fast-wave schemes. An attractive possibility is to

use dielectric loaded waveguide as the launcher. This option is currently

being studied.

The absorption efficiency of the waves at the resonance within the

plasma is theoretically a very complicated matter. It involves calculating the

launching, propagation, mode-conversion and absorption of the wave in the

strongly inhomogeneous plasma medium. Although the physics of ICRF is not

fully understood, which is an important reason for doing the experiments,

solutions in one dimension of the wave equations can be obtained from

numerical codes 2. Studies carried out on the anticipated Alcator C-Mod

plasmas show that for the D(He ) option the theoretical absorption in a single

pass through the plasma is about 10%, with perhaps a further 10% mode

converted to Bernstein waves. Previous experience indicates that this

absorption level is probably sufficient to ensure reasonable overall

efficiency, since the waves reflect from the plasma edge and hence make

multiple passes through the plasma. The hydrogen minority D(H) case has a much

higher theoretical single-pass absorption, typically 50% or more. The IBW

half-harmonic heating is a nonlinear process that is less well understood

theoretically. However, if the nonlinear absorption is insufficient, the

addition of a small He minority should provide almost complete linear

absorption only about 6cm from the plasma center. Thus all three ICRF

candidates look like feasible schemes and it will be of great interest to
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compare their effectiveness.

In addition to the main ICRF program, the option of heating by electron

cyclotron resonance absorption (ECH) appears very attractive. The physics of

absorption and the design of launching structures are in many respects more

straightforward for ECH. Theoretical efficiencies are close to 100% and the

control of the power deposition location is very good. The major difficulty is

the absence of appropriate wave sources. The frequency required is in the

vicinity of 140-250 GHz for magnetic fields of 5 to 9 T. Gyrotrons with

megawatt-level power are just becoming available at around 140GHz, but

extensive development will be needed to reach the higher frequencies we

require. If ECH is pursued for CIT the sources will have to be developed. Then

Alcator C-Mod would be an ideal testbed for their application. In addition to

transmission and launching technology studies, the ability to do local heating

and hence profile control would make experiments at even only a 1 MW level an

important physics program.

11 Diagnostics

A major part of the experimental effort on any plasma experiment is

devoted to the determination of the parameters of the plasma: diagnostics. To

some extent, the diagnostic systems are separate from the machine itself and

subject to modification and improvement. However, to give an impression of the

capabilities anticipated for Alcator C-Mod, Table 3 gives a list of the

diagnostic systems presently available or under development. The majority of

these will be installed from the beginning of operation.

_U Research Progr

The research program for Alcator C-Mod in its first few years is

focussed on investigating the physics outlined in the four objectives stated

earlier.

With first plasma operation, on the completion of construction,

scheduled for mid 1990, the initial phases will be devoted to learning how to

operate the tokamak. There are substantial unknown physics issues here. Bre-
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akdown and plasma initiation requires appropriate control of the poloidal

field null and evolution. In the presence of the thick vacuum vessel and

superstructure the eddy currents make this a substantially more complex task

than in previous tokamaks. Similarly, control of the plasma shape and

position, especially during the ramp-up of the current, are much more

elaborate issues with a strongly shaped machine. Further complications arise

because of the large eddy currents in the structures. This early plasma

operation will give the first opportunity to explore the ohmic performance and

to investigate topics that relate to it such as fuelling, impurity behaviour,

divertor operation, and confinement. Operation and debugging (with plasma) of

the many diagnostics will also begin at this stage. It is anticipated that

this initial phase will take about six months, assuming that no unforseen

difficulties arise.

The second phase of operation, lasting about six months, includes the

first stages of the ICRF heating operation. Exploring antenna loading and

learning how to couple the power will undoubtedly require considerable time.

Concurrently the ohmic and magnetic aspects of the plasma operation will be

brought up to full performance and optimization studies conducted on

confinement. The divertor studies will include the investigation of open

versus closed and limiter versus divertor effects, as well as the optimization

of divertor action for impurity control and fuelling.

The third phase of operation will see high power ICRF heating applied to

plasmas that are well-controlled and able to run in optimum divertor

configuration. Investigation of the confinement performance under such

circumstances will involve the search for improved confinement regimes such as

H-mode9 (which is not necessarily achievable with ICRF alone in Alcator C-Mod)

and P-mode (enhanced confinement with density profile peaking). Exploration

of the extremes of plasma shaping in this phase will contribute to our

understanding of the value of advanced shaping for plasma performance. Toward

the end of this phase, which may last perhaps two years, it is hoped that high

frequency gyrotrons should be available and therefore the physics and

technology of ECH can begin to be incorporated into the Alcator program. This

provides a means for support of the development of ECH as an alternative

scheme for CIT, but also more specifically enables the pursuit of temperature

profile control to begin.

The future of an experimental program beyond five years becomes rather
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harder to predict, since it depends to an increasing extent on the outcomes of

the earlier stages and of experiments elsewhere. However, current-profile

control seems a potentially very profitable line of research which we

anticipate being part of the Alcator program. In addition to the anticipated

ECH program, we have the sources (4MW at 4.6 GHz) built up during the Alcator

C program, to study lower hybrid current drive. Non-inductive current drive is

a topic of great long term importance in fusion. Moreover the flexibility, as

well as high performance, designed into Alcator C-Mod will make it a very

appropriate vehicle for the pursuit of tokamak research on topics that

progress may reveal to be of future significance. It is anticipated that

Alcator C-Mod will remain a valuable and profitable research resource for the

plasma fusion program into the late 1990s and possibly beyond.

13 Predicted Performance.

To predict the plasma parameters that will be obtained on Alcator C-Mod

requires assumptions to be made about confinement and heating, based on past

experience in tokamak research. There is no ab initio theory which we can use

with any confidence to predict the transport properties of tokamaks, but there

are several fairly well established "scaling laws", based on fits to experi-

mental data from many different machines, that form the basis of the present

predictions and indeed the predictions concerning other planned machines such

as CIT. These laws, particularly those which include auxiliary heating

effects, are based primarily on experiments in much lower density plasmas;

their validity is thus uncertain. Of course, one purpose of the Alcator C-Mod

experiments is to see whether in fact the plasma obeys these laws and whether

the predicted parameters are in fact achieved. Therefore the material of this

section should be -regarded as only our best estimate of what the plasmas will

be like.

13.1 Density

The range of density over which a tokamak can operate is limited at the

low end by runaway of the electrons and formation of energetic tails to the

electron distribution and also sometimes by the dominance of impurity species

over the working gas. The highest density that a tokamak can achieve is

generally limited by the occurrence of MHD instabilities that give rise to
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disruptions and catastrophic quenching of the plasma current. This maximum

achievable density is often called the density limit.

The cause of the density limit appears to be radiative cooling of the

edge of the plasma that gives rise to a contraction of the current profile and

eventually MHD instability. The balance between radiative loss and ohmic

heating explains to some extent the well established observation that the

density limit depends on the plasma current-density. This dependence has

traditionally been incorporated by expressing the density in terms of a

"Murakami number" : ReR/BT . This accounts for the fact 1 3 that the central

current density in a circular tokamak is generally proportional to BT/R.

Typically the limit on the Murakami number is observed to be roughly 0.6x1020

m 2T-1, although the exact value depends on a variety of factors. A slightly

different approach championed by Greenwald 1
4 is to regard the important

current density as being the mean over the plasma cross-section. The Greenwald

limit is then ,e/Kj - 1020 m~ MA 1. For a 3MA, 9T, x - 1.8 plasma in Alcator
20 -3

C-Mod, these density limits are respectively about 8 and 20 xlO2 m . A

valuable contribution from the experiments on Alcator C-Mod will be to help to

distinguish between these two limits.

It is generally the upper end of the density range that is of most

interest. However the flexibility of the machine is enhanced by a wide density

range. Alcator C was able to operate at densities down to a few times 1019 m

. We anticipate that Alcator C-Mod will have similar capability.

13.2 Energy Confinement

Perhaps the aspect of plasma performance most difficult to predict is

the energy confinement time. The electron transport in tokamaks is always

anomalously large compared to that predicted on the basis of purely

collisional (neoclassical) diffusion. There is mounting evidence that the ion

transport is also very often anomalous. The fits to empirical data from a

variety of experiments that we use for the prediction of Alcator C-Mod

performance are that the energy confinement time, r E, is given by one of the

following scalings:

1. NeoAlcator Confinement3

NA - 2x10 ji a R2  1/2 s.E e
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2. Kaye-Goldston (L-Mode)1 5

KG - 0 .055(I/mA)1 .2 4 B~- 0 0 10200 .26 R1 .6 a-0 .49
E ne/1 2 ) R1 6 a0 4

x X 0. 2 8 (p/) -0 .5 8  s.

3. Neoclassical Ion Transport

NC - 17 12 (Ti/keV)1/2 (R/a)1/2 n ~1 K2~1 S.Ei p .ne 2

Units here are S.I. except where specified otherwise and Pt indicates the

total heating power in the plasma. The collisionality coefficient, K2 , is that
16given by Chang and Hinton . Its value is 0.66 for low collisionality and

inverse aspect ratio.

The NeoAlcator confinement time describes the scaling for ohmically

heated tokamaks in moderate density regimes, while the Kaye-Goldston scaling

is appropriate for auxilliary-heated tokamaks. Both of these are the total

confinement time including both electron and ion transport. However, the

losses have normally been considered to be dominantly in the electron channel.

Therefore, for the purposes of our estimates, we take the power loss via the

electrons to be 3neTe/ 27Ee, where the electron confinement time is given by

- 2 /[(l/rNA)2 + KG 2

This form adds the two empirical loss terms in quadrature, thus making a

conservative estimate of confinement; the factor of two makes the loss via the

electrons contribute the total energy loss (when the electron and ion energy

contents are equal). An anomaly factor, AKG, in the Kaye Goldston component is

included to allow variable amounts of confinement deterioration.

The Neoclassical ion confinement time is an approximation to the losses

anticipated from the theoretical neoclassical ion thermal conduction. (The

power loss is 3 niTi/ 2rEi). Experimental observations of saturation of ohmic

confinement at high density can be reasonably modelled using purely NeoAlcator

electron losses (AKGO-) by taking the ion losses to be an anomally factor,

A , times the neoclassical value. Typically, to model Alcator C results , gas
fuelled plasmas required ion losses such that AC=3 but pellet-fuelled

plasmas required no anomally (ANC=1). The experiments also indicate that the

anomalous loss in the gas-fuelled case is indeed in the ion channel. An

alternate scaling, taking AC-1 but using the Kaye-Goldston scaling (AG')'

also reproduces the global confinement time for gas fuelled cases reasonably

well; although it attributes saturation to additional electron losses, in
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contradiction to the experimental indications.

A slightly different scaling also has received considerable attention

recently, namely the original Goldston scaling :

7 G - 0.037 (I/MA) R'.75 a-o. 3 7 )0.5 s.

This fits experiments (on various machines) with auxilliary heating. However,

for Alcator C it gives confinement times that are typically a factor of two

lower than what was observed for gas fuelled cases and than the Kaye-Goldston

scaling. This factor of two discrepancy with Kaye-Goldston is present also for

the high densities typical of Alcator C-Mod but in view of the Alcator C ex-

perience we regard Goldston confinement as probably unduly pessimistic for C-

Mod.

Calculations of the energy confinement time and the accompanying ion and

electron temperatures have been performed with a zero-dimensional model, in

which the electron and ion energy balance equations, coupled by the

collisional exchange of energy, are solved self-consistently with the total

heating and loss terms for the two species. Profile factors are accounted for

using parabolas to variable power. The density for the results that will be
2 2 0.6

shown is taken to be oc(l-r /a ) , where r is the midplane minor radius of

the assumed concentric elliptical flux surfaces. The temperature profile

exponent is taken to be that value which is consistent with a current density

profile proportional to Te 3/2 and safety factor of 1 on axis. The ion

temperature profile is effectively the same relative shape as the electron

temperature profile. More elaborate one-dimensional calculations have also

been done. Their results agree with the corresponding zero-dimensional cases,

within the uncertainties of the confinement scaling model. Therefore we give

only the zero-dimensional results here.

In Fig. 14 we show the total confinement time predicted for a full-

performance ohmic Alcator C-Mod plasma, as a function of central density.

(Parameters assumed for this and the following cases are: R-.665m, a-.21m,

rc-1.8, BT-9T, I -3MA, Zeff-1). The three cases shown are for: 'P' mode,

NeoAlcator electrons and lx Neoclassical ions (AKG-O, AMC-'); 'G' (gas) mode,

NeoAlcator electrons and 3x Neoclassical ions (AGO, Amc-3); and 'K-G', Kaye-

Goldston electrons and lx Neoclassical ions (AKGl, ANC-1). It may be observed

that the G and K-G modes give very similar confinement while the P-mode

enhancement is noticeable at high density. Fig. 15 gives the electron and ion

temperatures for two cases using G-mode confinement assumptions. The ohmic
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case is exactly that for the previous figure. For essentially the whole

density range the electrons and ions are closely coupled, having temperatures

between about 3.5 and 2 keV: very significant performance for an ohmic plasma.

The second case shown assumes that an additional heating power of 4MW is

deposited in the ions (modelling in an oversimplified way the anticipation

that the bulk of the ICRF power will go into ion heating). At high densities

the species are again well coupled, with temperature around 4.5 keV. However,

at the lower end of the density range the ions become decoupled from the

electrons and a hot ion mode appears, with temperatures to 20 keV and beyond.

As can be seen in Fig. 16, this hot ion mode is accompanied by an

increase of the total confinement time relative to ohmic. This is because more

of the plasma energy is in the ions, which have good confinement, than in the

electrons for the ion heated case. A K-G calculation shows essentially the

same effect but has lower confinement at high density. If the ion transport

anomaly is a strong function of ion temperature (or temperature profile, as

for ri mode losses) naturally these predictions might be altered. The Alcator

C-Mod experiments provide a good opportunity to investigate such issues, which

are critical for future experiments.

As a summary of the anticipated performance we can plot these results in

Fig. 17 as Lawson parameter, nerE, versus Ti. The plot includes lines of D-T

equivalent Q, the power factor that would be achieved for a pure 50-50 mix of

deuterium and tritium; Q-1 corresponds to "breakeven" and Q - - to "ignition".

Also, we show a variety of historically achieved values from various tokamaks.

The Alcator C-Mod predictions consist of the density scans, plotted as lines

on the figure; the uppermost end of the lines are at neo-102 m_ . Ohmic P and

C mode scalings are shown, while the 4MW ion heating case shown is for K-G

scaling, which is the most conservative (P mode comes almost to the Q-1 line

at the highest density). A striking aspect of these results is that the

predicted performance in Alcator C-Mod exceeds the present achievements of the

flagship tokamaks TFTR and JET, which are 3 to 4 times bigger and at least ten

times more expensive.

While these remarkable parameters await the operation of Alcator C-Mod

for their verification, this comparison does illustrate graphically the

potential benefits of high-field high-density tokamaks for pursuing the

plasmas needed for fusion.
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14 Conclusions

Alcator C-Mod incorporates various innovative engineering concepts,

which will provide valuable experience in the development of engineering

techniques for high-field compact fusion experiments. Its predicted plasma

performance is outstanding for a tokamak of such modest size and cost, and it

therefore represents a very effective vehicle for the study of plasma

confinement close to ignition conditions. The program we have outlined is

focussed toward resolving issues. that are crucial for the achievement of

fusion ignition in the near future, but it also addresses many questions of

fundamental long term importance to our understanding of the physics of

magnetic confinement. The flexibility of Alcator C-Mod ensures that it can be

used to pursue appropriate research objectives and hence will be productive in

fusion research for a long time to come.
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Figure Captions

Fig.1 Cutaway drawing of Alcator C-Mod.

Fig.2 Elevation of Alcator C-Mod.

Fig.3 Concept for the toroidal field coil sliding joint assembly.

Fig.4 Detail of the sliding joint design, showing the finger shaping and

feltmetal pads.

Fig.5 Perspective CAD drawing of the OH solenoid, showing the two parts OHl

and OH2.

Fig.6 The vacuum vessel. Thickwall stainless steel construction is used.

Fig.7 Standard equilibrium flux surfaces, showing the plasma diverted into the

bottom divertor.

Fig.8 The profiles, for the equilibrium of Fig.7, of (a) Toroidal current

density, (b) Safety factor, as a function of poloidal flux, normalised to the

95% value.

Fig.9 Sequence of plasma shapes for a current ramp up and flat-top calculated

with TSC. The time covered by this sequence is the first 2 seconds of plasma. -

Fig.10 Evolution of toroidal field (a), plasma current (b), and plasma density

(c) in the TSC simulation of Fig.9.

Fig.ll The axisymmetric model for eddy-current calculations. Blocks show the

finite coil elements of the active and passive structures. The flux contours

are calculated for a startup scenario in which a good field null for breakdown

is obtained, including effects of all the eddy currents.

Fig.12 The ion cyclotron resonant frequencies relevant to Alcator C-Mod ICRF,
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hydrogen (fcH), deuterium (fcD), and helium-3 (fcHe3) frequencies are shown.

The source frequency at 80 MHz is resonant at different operating magnetic

fields.

Fig.13 The ICRF antenna shown mounted in the port of Alcator C-Mod.

Fig.14 Predicted energy confinement time versus central density for ohmically

heated plasmas.

Fig.15 Electron and ion central temperatures predicted for ohmic and ion-

heated plasmas using the "G" (gas-fuelled) confinement assumptions.

(NeoAlcator electron and 3x Neoclassical ion losses).

Fig.16 Comparison of the confinement predicted for ion-heated and ohmic cases

for G-mode. Also shown (dashed) is the result for K-G (Kaye-Goldston electron)

confinement assumptions in the heated case.

Fig.17 Ignition plot of Lawson parameter (nei) versus central ion

temperature. Predicted lines for density scans in Alcator C-Mod are compared

with historically achieved values. The ion-heated case uses Kaye-Goldston

scaling.
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Table 3: ALCATOR C-MOD DIAGNOSTIC SYSTEMS

Diagnostic Technique Parameters

Nd:YAG Thomson Scattering

Dual Wavelength
Interferometer

Electron Cyclotron Emission
a) Fast Scanning Michelson
b) Multi-Channel Grating

Spectrometer

Neutral Particle Energy
Analysis

Neutron Diagnostics
a) 'He Spectrometer
b) BF 3 Long Counter Array
c) NE-213 Spectrometer

Visible and UV Spectroscopy

a) 2.2 Meter Grazing In-
cidence Time Resolving
Spectrograph

b) 0.125 Meter Far UV
Monochromator

c) 0.2 Meter Extreme
UV Monochromator

d) 1.0 Meter Normal In-
cidence Time Resolving
Spectrograph

e) Visible continuum

g) Periscope

n,(r,t)

T,(r,t)
T,(r,t)

Ti(r,t); Ion Distri-
bution Function

Ti(r=O,t)
Total Neutron Flux
Energy Spectra of both
D-D and D-T produced
neutrons

Line Emission

Line Emission

Line Emission

Line Emission
Doppler broadening,
shifts
n,2 X Z-ff /

Tangential View
in Visible Light

50 Hz rep. rate, 2-d profiles

Multi-Chord, CW
operation. Able easily
to follow density
rise with pellet
injection.

Complete Spectra
Complete time histories at
discrete radial points.

Two systems: one
perpendicular, one tangential

Covers any 40 A slice
between 18 A and 600 A
with 4 msec time and
0.2 A spectral resolu-
tion
1200 A< A < 2300 A

400 A< A < 1500 A

1200 A< A < 8000 A

One 16 channel tangential
array, plus a single
chord system.
2 systems

Features

T,(r,G, t); n,(r,O,t)



X-ray Diagnostics
a) Compact Curved Crystal

Time Resolving Spectro-
graph Arrays

b) Broad Band Soft X-Ray
Arrays

c) HgI 2 Pulse Height System

d) Flat crystal monochro-
mator

e) Nal Array

f) Pinhole Camera

Bolometry

CO2 Scattering

Langmuir Probes

Infrared Surface Temper-
ature Measurements

Reflectometer

Lithium Pellet Injector

Laser Blow-Off Impurity
Injector

Time of Flight Low Energy
Neutral Spectroscopy

Ti(r,t); T,(r,t);
n,(r,t)

Plasma position and
shape; MHD activity;
impurity transport
T.(r,t); Electron
tails
Line and Continuum
Emission
Hard X-rays produced
at walls and limiter/
divertor plate
structures as well as
from non-thermal
plasma electrons
Tangential Image of
Soft X-Ray Emission
Total radiated plus
charge exchange power
from plasma

Fluctuations; Driven
lower hybrid, ICRF
waves

Edge temperature and
density profiles

Limiter/divertor plate
surface temperatures

Edge Density Profiles

Current Density Profile

Impurity Transport,
Confinement

Edge T; and neutral
density

1.5 keV < hv <5 keV,
Measures Doppler
broadening of
impurity lines.
Fully two-dimensional
tomographic reconstruc-
tions.
5 keV < hv < 100 keV,
500 eV resolution
1 keV < hi < 8 keV,
50 eV resolution
0.5 MeV < hv < 20 MeV,
spatially resolved

Spatially Resolved

Poloidal and radial
scanning capability
with multi-probe
arrays.

2-d imaging

10 eV < E < 2000 eV
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