529 research outputs found

    Spectral Graph Convolutions for Population-based Disease Prediction

    Get PDF
    Exploiting the wealth of imaging and non-imaging information for disease prediction tasks requires models capable of representing, at the same time, individual features as well as data associations between subjects from potentially large populations. Graphs provide a natural framework for such tasks, yet previous graph-based approaches focus on pairwise similarities without modelling the subjects' individual characteristics and features. On the other hand, relying solely on subject-specific imaging feature vectors fails to model the interaction and similarity between subjects, which can reduce performance. In this paper, we introduce the novel concept of Graph Convolutional Networks (GCN) for brain analysis in populations, combining imaging and non-imaging data. We represent populations as a sparse graph where its vertices are associated with image-based feature vectors and the edges encode phenotypic information. This structure was used to train a GCN model on partially labelled graphs, aiming to infer the classes of unlabelled nodes from the node features and pairwise associations between subjects. We demonstrate the potential of the method on the challenging ADNI and ABIDE databases, as a proof of concept of the benefit from integrating contextual information in classification tasks. This has a clear impact on the quality of the predictions, leading to 69.5% accuracy for ABIDE (outperforming the current state of the art of 66.8%) and 77% for ADNI for prediction of MCI conversion, significantly outperforming standard linear classifiers where only individual features are considered.Comment: International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI) 201

    Sawtooth period changes with mode conversion current drive on Alcator C-Mod

    Get PDF
    DEFC0299ER54512. Reproduction,  translation,  publication,  use and disposal,  in whole or in part,  by or for the United States government is permitted. Submitted for publication to Plasma Physics and Controlled Fusion. Sawtooth period changes with mode conversion current drive on Alcator C-Mo

    GAN-based multiple adjacent brain MRI slice reconstruction for unsupervised alzheimer’s disease diagnosis

    Get PDF
    Unsupervised learning can discover various unseen diseases, relying on large-scale unannotated medical images of healthy subjects. Towards this, unsupervised methods reconstruct a single medical image to detect outliers either in the learned feature space or from high reconstruction loss. However, without considering continuity between multiple adjacent slices, they cannot directly discriminate diseases composed of the accumulation of subtle anatomical anomalies, such as Alzheimer's Disease (AD). Moreover, no study has shown how unsupervised anomaly detection is associated with disease stages. Therefore, we propose a two-step method using Generative Adversarial Network-based multiple adjacent brain MRI slice reconstruction to detect AD at various stages: (Reconstruction) Wasserstein loss with Gradient Penalty + L1 loss---trained on 3 healthy slices to reconstruct the next 3 ones---reconstructs unseen healthy/AD cases; (Diagnosis) Average/Maximum loss (e.g., L2 loss) per scan discriminates them, comparing the reconstructed/ground truth images. The results show that we can reliably detect AD at a very early stage with Area Under the Curve (AUC) 0.780 while also detecting AD at a late stage much more accurately with AUC 0.917; since our method is fully unsupervised, it should also discover and alert any anomalies including rare disease.Comment: 10 pages, 4 figures, Accepted to Lecture Notes in Bioinformatics (LNBI) as a volume in the Springer serie

    Edge-variational Graph Convolutional Networks for Uncertainty-aware Disease Prediction

    Full text link
    There is a rising need for computational models that can complementarily leverage data of different modalities while investigating associations between subjects for population-based disease analysis. Despite the success of convolutional neural networks in representation learning for imaging data, it is still a very challenging task. In this paper, we propose a generalizable framework that can automatically integrate imaging data with non-imaging data in populations for uncertainty-aware disease prediction. At its core is a learnable adaptive population graph with variational edges, which we mathematically prove that it is optimizable in conjunction with graph convolutional neural networks. To estimate the predictive uncertainty related to the graph topology, we propose the novel concept of Monte-Carlo edge dropout. Experimental results on four databases show that our method can consistently and significantly improve the diagnostic accuracy for Autism spectrum disorder, Alzheimer's disease, and ocular diseases, indicating its generalizability in leveraging multimodal data for computer-aided diagnosis.Comment: Accepted to MICCAI 202

    Monitoramento das águas subterráneas adjacentes ao aterro sanitário de Taubaté(SP): primeiros resultados

    Get PDF
    36 observation wells, varying from 2 to 5 meters in depth to water, were installed over a 20,000 m² area downgradient from the Taubate sanitary landílll as part of a project to monitor groundwater quality at the site. In 1984, the first year of the study, water leveis in the wells were measured monthly and water quality samples were collected and analyzed every 3 months. The chemical analyses results showed an increase in the overall mineralization of the groundwater in the vicinity of the landfill, particularly for chloride, soium bicarbonate, potassium, magnesium and ammonium ions. Good correlations were demonstrated between specific conductance and total dissolve d solids (TDS), which consiste d principally of chloride and sodium ions. For the geohydrologic environment studied, the best indicators of landfill pollution were: specific conductance, sodium, chloride and ammonium ionsForam instalados 36 poços de observação, de 2 a 5m de profundidade numa área de 20.000 m² a jusante do aterro sanitário de Taubaté a fim de se monitorar a qualidade das águas subterrâneas no local. Em 1984, primeiro ano do estudo, o nível de água nos poços foi medido mensalmente e foram coletadas e analisadas amostras de água de cada poço trimestralmente. Os resultados das análises químicas mostraram que a proximidade do depósito de lixo provoca o aumento da mineralização total da água subterrânea, e em particular das concentrações dos íons cloreto, sódio, bicarbonato, potássio, magnésio e amônio. Foram evidenciadas boas correlações lineares entre a condutividade e as concentrações de sólidos totais dissolvidos - de cloretos e de sódio. No ambiente hidrogeológico estudado, a condutividade, o sódio, o cloreto e o nitrogênio amordaçai constituem os indicadores da poluição pelo lix

    Off-Axis Nulling Transfer Function Measurement: A First Assessment

    Get PDF
    We want to study a polychromatic inverse problem method with nulling interferometers to obtain information on the structures of the exozodiacal light. For this reason, during the first semester of 2013, thanks to the support of the consortium PERSEE, we launched a campaign of laboratory measurements with the nulling interferometric test bench PERSEE, operating with 9 spectral channels between J and K bands. Our objective is to characterise the transfer function, i.e. the map of the null as a function of wavelength for an off-axis source, the null being optimised on the central source or on the source photocenter. We were able to reach on-axis null depths better than 10(exp 4). This work is part of a broader project aiming at creating a simulator of a nulling interferometer in which typical noises of a real instrument are introduced. We present here our first results

    SPHERE: the exoplanet imager for the Very Large Telescope

    Get PDF
    Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&

    Prediction of Thrombectomy Functional Outcomes using Multimodal Data

    Full text link
    Recent randomised clinical trials have shown that patients with ischaemic stroke {due to occlusion of a large intracranial blood vessel} benefit from endovascular thrombectomy. However, predicting outcome of treatment in an individual patient remains a challenge. We propose a novel deep learning approach to directly exploit multimodal data (clinical metadata information, imaging data, and imaging biomarkers extracted from images) to estimate the success of endovascular treatment. We incorporate an attention mechanism in our architecture to model global feature inter-dependencies, both channel-wise and spatially. We perform comparative experiments using unimodal and multimodal data, to predict functional outcome (modified Rankin Scale score, mRS) and achieve 0.75 AUC for dichotomised mRS scores and 0.35 classification accuracy for individual mRS scores.Comment: Accepted at Medical Image Understanding and Analysis (MIUA) 202
    corecore