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Abstract. Unsupervised learning can discover various diseases, relying
on large-scale unannotated medical images of healthy subjects. Towards
this, unsupervised methods reconstruct a single medical image to detect
outliers either in the learned feature space or from high reconstruction
loss. However, without considering continuity between multiple adjacent
slices, they cannot directly discriminate diseases composed of the accu-
mulation of subtle anatomical anomalies, such as Alzheimer’s Disease
(AD). Moreover, no study has shown how unsupervised anomaly detec-
tion is associated with disease stages. Therefore, we propose a two-step
method using Generative Adversarial Network-based multiple adjacent
brain MRI slice reconstruction to detect AD at various stages: (Recon-
struction) Wasserstein loss with Gradient Penalty + `1 loss—trained
on 3 healthy slices to reconstruct the next 3 ones—reconstructs unseen
healthy/AD cases; (Diagnosis) Average/Maximum loss (e.g., `2 loss) per
scan discriminates them, comparing the reconstructed/ground truth im-
ages. The results show that we can reliably detect AD at a very early
stage with Receiver Operating Characteristics-Area Under the Curve
(ROC-AUC) 0.780 while also detecting AD at a late stage much more
accurately with ROC-AUC 0.917; since our method is fully unsupervised,
it should also discover and alert any anomalies including rare disease.

Keywords: Generative adversarial networks · Alzheimer’s disease diag-
nosis · Unsupervised anomaly detection · Brain MRI reconstruction.
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1 Introduction

Deep Learning can achieve accurate computer-assisted diagnosis when large-
scale annotated training samples are available. In medical imaging, unfortu-
nately, preparing such massive annotated datasets is often unfeasible; to tackle
this important problem, researchers have proposed various data augmentation
techniques, including Generative Adversarial Network (GAN)-based ones [1–
5]. However, even exploiting these techniques, supervised learning still requires
many images with pathological features, even for rare disease, to make a reliable
diagnosis; nevertheless, it can only detect already-learned specific pathologies.
In this regard, as physicians notice previously unseen anomaly examples using
prior information on healthy body structure, unsupervised anomaly detection
methods leveraging only large-scale healthy images can discover and alert the
presence of the disease when their generalization fails.

Towards this, researchers reconstructed a single medical image via GANs [6],
AutoEncoders (AEs) [7], or combining them, since GANs can generate realistic
images and AEs, especially Variational AEs, can directly map data onto its latent
representation [8]; then, unseen images were scored by comparing them with re-
constructed ones to discriminate a pathological image distribution (i.e., outliers
either in the learned feature space or from high reconstruction loss). However,
those single image reconstruction methods mainly target diseases easy-to-detect
from a single image even for non-expert human observers, such as glioblastoma
on Magnetic Resonance Imaging (MRI) [8] and lung cancer on Computed To-
mography images [7]. Without considering continuity between multiple adjacent
images, they cannot directly discriminate diseases composed of the accumulation
of subtle anatomical anomalies, such as Alzheimer’s Disease (AD). Moreover, no
study has shown so far how unsupervised anomaly detection is associated with
disease stages. We thus propose a two-step method using GAN-based multiple
adjacent brain MRI slice reconstruction to detect AD at various stages (Fig. 1):
(Reconstruction) Wasserstein loss with Gradient Penalty (WGAN-GP) [9, 10]
+ `1 loss—trained on 3 healthy brain axial MRI slices to reconstruct the next
3 ones—reconstructs unseen healthy/AD cases; (Diagnosis) Average/Maximum
loss (e.g., `2 loss) per scan discriminates them, comparing the reconstructed and
ground truth images.

Contributions. Our main contributions are as follows:

– MRI Slice Reconstruction: This first multiple MRI slice reconstruction
approach can predict the next 3 brain MRI slices from the previous 3 ones
only for unseen images similar to training data by combining WGAN-GP
and `1 loss.

– Unsupervised Anomaly Detection: This first unsupervised anomaly de-
tection across different disease stages reveals that, like physicians’ way of
diagnosis, massive healthy data can reliably aid early diagnosis, such as of
Mild Cognitive Impairment (MCI), while also detecting late-stage disease
much more accurately by discriminating with `2 loss.
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Fig. 1. Unsupervised AD diagnosis framework: we train WGAN-GP + `1 loss on 3
healthy brain axial MRI slices to reconstruct the next 3 ones, and test it on both
unseen healthy and AD cases to classify them based on average/maximum loss (e.g.,
`2 loss) per scan.

– Alzheimer’s Disease Diagnosis: This first unsupervised AD diagnosis
study can reliably detect AD and also other diseases.

The remainder of the manuscript is organized as follows: Sect. 2 outlines the
state-of-the-art of automated AD diagnosis; Sect. 3 describes the analyzed MRI
dataset, as well as the proposed GAN-based unsupervised AD diagnosis frame-
work; experimental results are shown and discussed in Sect. 4; finally, Sect. 5
provides conclusive remarks and future work.

2 Automated Alzheimer’s Disease Diagnosis

Despite the clinical, social, and economic significance of early AD diagnosis—
primarily associated with MCI detection—it generally relies on subjective as-
sessment by physicians (e.g., neurologists, geriatricians, and psychiatrists); to
tackle this open challenge, researchers have used classic supervised Machine
Learning based on hand-crafted features [11, 12]. More recently, Deep Learn-
ing has attracted great attentions owing to its more abstract and descriptive
embedding based on multiple non-linear transformations: Liu et al. used a semi-
supervised CNN to significantly reduce the need for labeled training data[13]; for
clinical decision-making, Suk et al. integrated multiple sparse regression models
(namely, Deep Ensemble Sparse Regression Network) [14]; Spasov et al. devised a
parameter-efficient CNN for 3D separable convolutions, combining dual learning
and a specific layer to predict the conversion from MCI to AD within 3 years [15];
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instead of exploiting the CNNs, Parisot used a semi-supervised Graph Convolu-
tional Network trained on a sub-set of labeled nodes with diagnostic outcomes
to represent sparse clinical data [16].

To the best of our knowledge, no existing work has conducted fully unsu-
pervised anomaly detection for AD diagnosis since capturing subtle anatomical
differences between MCI and AD is challenging. Therefore, without requiring
any labeled data for training, the proposed GAN-based unsupervised approach
might provide new insights into AD research.

3 Materials and Methods

3.1 OASIS-3 Dataset

We use a longitudinal dataset of 176 × 240/176 × 256 T1-weighted (T1w) 3T
brain axial MRI slices containing both normal aging subjects/AD patients ex-
tracted from the Open Access Series of Imaging Studies-3 (OASIS-3) [17]. The
176 × 240 slices are zero-padded to reach 176 × 256 pixels. Relying on Clinical
Dementia Rating (CDR) [18], common clinical scale for the staging of dementia,
the subjects are comprised of:

– Unchanged CDR = 0: Cognitively healthy population;
– CDR = 0.5: Very mild dementia (∼ MCI);
– CDR = 1: Mild dementia;
– CDR = 2: Moderate dementia.

Since our dataset is longitudinal and the same subject’s CDRs may vary (e.g.,
CDR = 0 to CDR = 0.5), we only use scans with unchanged CDR = 0 to assure
certainly healthy scans. As CDRs and MRI scans are not always simultaneously
acquired, we label MRI scans with CDRs at the closest date. We only select
brain MRI slices including hippocampus/amygdala/ventricles among whole 256
axial slices per scan to avoid over-fitting from AD-irrelevant information; the
atrophy of the hippocampus/amygdala/cerebral cortex, and enlarged ventricles
are strongly associated with AD, and thus they mainly affect the AD classifi-
cation performance of Machine Learning [19]. Moreover, we discard low-quality
MRI slices. The remaining dataset is divided as follows:

– Training set: Unchanged CDR = 0 (408 subjects/1, 133 scans/57, 834 slices);
– Validation set: Unchanged CDR = 0 (55 subjects/155 scans/8, 080 slices),

CDR = 0.5 (53 subjects/85 scans/4, 607 slices),
CDR = 1 (29 subjects/45 scans/2, 518 slices),
CDR = 2 (2 subjects/4 scans/160 slices);

– Test set: Unchanged CDR = 0 (113 subjects/318 scans/16, 198 slices),
CDR = 0.5 (99 subjects/168 scans/9, 206 slices),
CDR = 1 (61 subjects/90 scans/5, 014 slices),
CDR = 2 (4 subjects/6 scans/340 slices).
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The same subject’s scans are included in the same dataset. The datasets are
strongly biased towards healthy scans similarly to MRI inspection in the clin-
ical routine. During training for reconstruction, we only use the training set
containing healthy slices to conduct unsupervised learning.

3.2 GAN-based Multiple Adjacent Brain MRI Slice Reconstruction

To model the strong consistency of healthy brain anatomy (Fig. 1), in each scan,
we reconstruct the next 3 MRI slices from the previous 3 ones using an image-to-
image GAN (e.g., if a scan includes 40 slices si for i = 1, . . . , 40, we reconstruct all
possible 35 setups: (si)i∈{1,2,3} 7→ (si)i∈{4,5,6}; (si)i∈{2,3,4} 7→ (si)i∈{5,6,7}; . . . ;
(si)i∈{35,36,37} 7→ (si)i∈{38,39,40}). We concatenate adjacent 3 grayscale slices
into 3 channels, such as in RGB images. The GAN uses: (i) a U-Net-like [20, 21]
generator with 4 convolutional and 4 deconvolutional layers in encoders and de-
coders, respectively, with skip connections; (ii) a discriminator with 3 decoders.
We apply batch normalization to both convolution with Leaky Rectified Linear
Unit (ReLU) and deconvolution with ReLU. To confirm how reconstructed im-
ages’ realism and anatomical continuity affect anomaly detection, we compare
the GAN models with different loss functions, namely: (i) Dice loss (i.e., a plain
U-Net without the discriminator); (ii) WGAN-GP loss; (iii) WGAN-GP loss +
100 `1 loss. Among 8 losses comparing ground truth/reconstructon, average `2
loss per scan always outperforms the other losses during validation for U-Net
and WGAN-GP without/with `1 loss, and thus we use this loss for testing.

Considering its computational speed, U-Net training lasts for 600, 000 steps
with a batch size of 64 and both GAN trainings last for 300, 000 steps with a
batch size of 32. We use 2.0 × 10−4 learning rate for the Adam optimizer [22].
The framework is implemented on Keras with TensorFlow as backend.

3.3 Unsupervised Alzheimer’s Disease Diagnosis

During validation, we compare the following average/maximum losses per scan
(i.e., 8 losses) between reconstructed/ground truth 3 slices (Fig. 1): (i) `1 loss;
(ii) `2 loss; (iii) Dice loss; (iv) Structural Similarity loss. For each model’s
testing, we separately pick the loss showing the highest Receiver Operating
Characteristics-Area Under the Curve (ROC-AUC) between CDR = 0 (i.e.,
healthy population) vs all the other CDRs (i.e., dementia) during validation.
As a result, we pick the average `2 loss per scan for all models since squared
error is sensitive to outliers and it always outperforms the others. To evaluate
its unsupervised AD diagnosis performance for test sets, we show ROC and
Precision-Recall (PR) curves, along with their AUCs, between CDR = 0 vs (i)
all the other CDRs; (ii) CDR = 0.5; (iii) CDR = 1; (iv) CDR = 2. We visualize
`2 loss distributions of CDR = 0/0.5/1/2 to know how disease stages affect its
discrimination.
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Fig. 2. Example brain MRI slices with CDR = 0/0.5/1/2 from test sets: (a) Input 3
real slices; (b) Ground truth next 3 real slices; (c) Next 3 slices reconstructed by U-Net;
(d), (e) Next 3 slices reconstructed by WGAN-GP without/with `1 loss.

4 Results

4.1 Reconstructed Brain MRI Slices

Fig. 2 illustrates example real MRI slices from test sets and their reconstruc-
tion by U-Net and WGAN-GP without/with `1 loss. The WGAN-GP + `1 loss
can successfully capture T1w-specific appearance and anatomical changes from
the previous 3 slices more smoothly than the U-Net and in more detail than
the WGAN-GP without `1 loss. Since the models are trained only on healthy
slices, reconstructing slices with higher CDRs tends to comparatively fail, es-
pecially around hippocampus, amygdala, cerebral cortex, and ventricles due to
their insufficient atrophy after reconstruction.

4.2 Unsupervised AD Diagnosis Results

Figs. 3 and 4 show ROC and PR curves, respectively—along with their AUCs—
of unsupervised anomaly detection. We do not show confidence intervals since
the diagnosis stage is non-trainable. Since brains with higher CDRs accom-
pany stronger anatomical atrophy from healthy brains, their ROC-AUCs be-
tween unchanged CDR = 0 remarkably increase as CDRs increase. Clearly
outperforming the other methods in every condition, WGAN-GP + `1 loss
achieves excellent ROC-AUCs, especially for higher CDRs—it obtains ROC-
AUC = 0.780/0.833/0.917 for CDR = 0 vs CDR = 0.5/1/2, respectively; this
experimental finding derives from `1 loss’ good realism sacrificing diversity (i.e.,
generalizing well only for unseen images with a similar distribution to training
images) and WGAN-GP loss’ ability to capture recognizable structure. Fig. 5
indicates its good discrimination ability even between healthy subjects vs MCI
patients (i.e., CDR = 0 vs CDR = 0.5), which is extremely difficult even in a
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Fig. 3. Unsupervised anomaly detection results using average `2 loss per scan on re-
constructed brain MRI slices (ROC curves and ROC-AUCs): unchanged CDR = 0 (i.e.,
cognitively healthy population) is compared with (a) all the other CDRs (i.e., demen-
tia); (b) CDR = 0.5 (i.e., very mild dementia); (c) CDR = 1 (i.e., mild dementia); (d)
CDR = 2 (i.e., moderate dementia).

supervised manner [19]. Interestingly, unlike our visual expectation, WGAN-GP
without `1 loss outperforms plain U-Net regardless of its very blurred recon-
struction, showing the superiority of GAN-based reconstruction for diagnosis.

5 Conclusions and Future Work

Using a massive amount of healthy images, our GAN-based multiple MRI slice
reconstruction can successfully discriminate AD patients from healthy subjects
for the first time in an unsupervised manner; our solution leverages a two-step
approach: (Reconstruction) `1 loss generalizes well only for unseen images with a
similar distribution to training images while WGAN-GP loss captures recogniz-
able structure; (Diagnosis) `2 loss clearly discriminates healthy/abnormal data
as squared error becomes huge for outliers. Using 1, 133 healthy MRI scans for
training, our approach can reliably detect AD at a very early stage, MCI, with
ROC-AUC = 0.780 while detecting AD at a late stage much more accurately
with ROC-AUC = 0.917—implying its ability to detect various other diseases.
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Fig. 4. Unsupervised anomaly detection results using average `2 loss per scan on recon-
structed brain MRI slices (PR curves and PR-AUCs): unchanged CDR = 0 is compared
with (a) all the other CDRs; (b) CDR = 0.5; (c) CDR = 1; (d) CDR = 2.

Fig. 5. Distributions of average `2 loss per scan evaluated on brain MRI slices with
CDR = 0/0.5/1/2 reconstructed by WGAN-GP + `1 loss.
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Accordingly, this first unsupervised anomaly detection across different disease
stages reveals that, like physicians’ way of diagnosis, large-scale healthy data can
reliably aid early diagnosis, such as of MCI, while also detecting late-stage disease
much more accurately. Since our method deals well with diseases that are hard-
to-detect even in supervised learning, this unsupervised approach should also
discover/alert any anomalies including rare disease, where supervised learning
is inapplicable [23]. As future work, we will reconstruct slices from both previ-
ous/next 3 slices (e.g., slices si for i = 1, . . . , 9, (si)i∈{1,2,3,7,8,9} 7→ (si)i∈{4,5,6})
for robustness, also optimizing the number of slices (e.g., 3 slices to 1 or 5
slices). We will investigate more reconstruction networks (e.g., GANs with atten-
tion mechanisms) and multiple loss functions for both reconstruction/diagnosis.
Lastly, we plan to detect and locate various diseases, including cancer [24]
and rare diseases—this work only uses brain MRI slices including hippocam-
pus/amygdala/ventricles for AD diagnosis, but we may have to use all or most
brain MRI slices to also detect anomalies appearing in other anatomical loca-
tions within the brain. Integrating multimodal imaging data, such as Positron
Emission Tomography with specific radiotracers [25], might further improve AD
diagnosis [26], even when analyzed modalities are partially unavailable [27].

Acknowledgment

This research was partially supported by AMED Grant Number JP18lk1010028,
and also partially supported by The Mark Foundation for Cancer Research and
Cancer Research UK Cambridge Centre [C9685/A25177]. Additional support has
been provided by the National Institute of Health Research (NIHR) Cambridge
Biomedical Research Centre. Zoltán Ádám Milacski was supported by Grant
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