62 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Chromatographic Analysis of Silybum Marianum (L.) Gaertn. Fatty Oil

    No full text

    Characterization of polysulfides in Saccharomyces cerevisiae cells and finished wine from a cysteine-supplemented model grape medium

    No full text
    Polysulfide degradation in wine can result in hydrogen sulfide (H2S) release, imparting a rotten-egg smell that is detrimental to wine quality. Although the presence of wine polysulfides has been demonstrated, their biogenesis remains unclear. This study investigated the role of Saccharomyces cerevisiae in polysulfide formation during fermentation, with and without 5 mM cysteine supplementation as an H2S source. Using an established liquid chromatography-tandem mass spectrometry method, monobromobimane derivatives of hydropolysulfides, including CysSSSH, CysSSSSH and GSSSSH, and two oxidized polysulfides, GSSG and GSSSSG, were detected in yeast cells at the end of fermentation in a grape juice-like medium. Polysulfide production by four S. cerevisiae single deletion mutants (BY4743 Δcys3, Δcys4, Δmet17 and Δtum1) showed no significant differences compared to BY4743, suggesting that uncharacterized pathways maintain cellular polysulfide homeostasis. Five mM cysteine addition increased the formation of shorter sulfur chain species, including GSS-bimane and GSSG, but did not elevate levels of longer sulfur chain species. Additionally, polysulfides with even numbers of sulfur atoms tended to predominate in cellular lysates. Oxidized polysulfides and longer chain hydropolysulfides were not detected in finished wines. This evidence suggests that these polysulfides are unstable in wine-like environments or not transported extracellularly. Collectively, our data illustrate the complexity of yeast polysulfide metabolism under fermentation conditions.Chien-Wei Huang, Rebecca C. Deed, Katie Parish-Virtue, Lisa I. Pilkington, Michelle E. Walker, Vladimir Jiranek, Bruno Fedrizz

    Oxysterols: chemical synthesis, biosynthesis and biological activities.

    No full text
    As a class of compounds, oxysterols have demonstrated a wide variety of biological properties. Due to the general interest in these compounds, new methods of chemical synthesis have been developed to provide them for biological investigation. The specific inhibition by oxysterols of cholesterol biosynthesis in mammalian cells has been shown to result primarily from a decrease in cellular levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. Recent evidence suggests these cellular responses may be mediated by an oxysterol binding protein found in the cytosol of many lines of cultured cells. In certain instances, oxysterols have been shown to be produced in biological systems. These results support the supposition that oxysterols may regulate sterol biosynthesis at the cellular level. Included herein are the inhibitory effects of 9 alpha, 11 alpha-epoxycholest-7-en-3 beta-ol cholest-8-en-3 beta-ol-7-one and cholest-8-en-3 beta-ol-11-one on HMG-CoA reductase activity and their relative affinities for a cytosolic binding protein
    corecore