55 research outputs found

    Role of the Ce valence in the coexistence of superconductivity and ferromagnetism of CeO1x_{1-x}Fx_{x}BiS2_{2} revealed by Ce L3L_3-edge x-ray absorption spectroscopy

    Full text link
    We have performed Ce L3L_3-edge x-ray absorption spectroscopy (XAS) measurements on CeO1x_{1-x}Fx_xBiS2_2, in which the superconductivity of the BiS2_2 layer and the ferromagnetism of the CeO1x_{1-x}Fx_x layer are induced by the F-doping, in order to investigate the impact of the F-doping on the local electronic and lattice structures. The Ce L3L_3-edge XAS spectrum of CeOBiS2_2 exhibits coexistence of 4f14f^1 (Ce3+^{3+}) and 4f04f^0 (Ce4+^{4+}) state transitions revealing Ce mixed valency in this system. The spectral weight of the 4f04f^0 state decreases with the F-doping and completely disappears for x>0.4x>0.4 where the system shows the superconductivity and the ferromagnetism. The results suggest that suppression of Ce-S-Bi coupling channel by the F-doping appears to drive the system from the valence fluctuation regime to the Kondo-like regime, leading to the coexistence of the superconducting BiS2_2 layer and the ferromagnetic CeO1x_{1-x}Fx_x layer.Comment: 5 pages, 5 figure

    Orbital-selective confinement effect of Ru 4d4d orbitals in SrRuO3_3 ultrathin film

    Get PDF
    The electronic structure of SrRuO3_3 thin film with thickness from 50 to 1 unit cell (u.c.) is investigated via the resonant inelastic x-ray scattering (RIXS) technique at the O K-edge to unravel the intriguing interplay of orbital and charge degrees of freedom. We found that orbital-selective quantum confinement effect (QCE) induces the splitting of Ru 4d4d orbitals. At the same time, we observed a clear suppression of the electron-hole continuum across the metal-to-insulator transition (MIT) occurring at the 4 u.c. sample. From these two clear observations we conclude that QCE gives rise to a Mott insulating phase in ultrathin SrRuO3_3 films. Our interpretation of the RIXS spectra is supported by the configuration interaction calculations of RuO6_6 clusters.Comment: 7 pages, 7 figure

    Terahertz displacive excitation of a coherent Raman-active phonon in V2O3

    Get PDF
    Nonlinear processes involving frequency-mixing of light fields set the basis for ultrafast coherent spectroscopy of collective modes in solids. In certain semimetals and semiconductors, generation of coherent phonon modes can occur by a displacive force on the lattice at the difference-frequency mixing of a laser pulse excitation on the electronic system. Here, as a low-frequency counterpart of this process, we demonstrate that coherent phonon excitations can be induced by the sum-frequency components of an intense terahertz light field, coupled to intraband electronic transitions. This nonlinear process leads to charge-coupled coherent dynamics of Raman-active phonon modes in the strongly correlated metal VO. Our results show an alternative up-conversion pathway for the optical control of Raman-active modes in solids mediated by terahertz-driven electronic excitation

    Strain-engineering of the charge and spin-orbital interactions in Sr2IrO4

    Get PDF
    In the high spin-orbit coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent Resonant Inelastic X-ray Scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven crossover from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron-hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information towards the control of the ground state of complex oxides in the presence of high spin-orbit coupling.Comment: Published in Proceedings of the National Academy of Sciences, September 202

    Collective nature of orbital excitations in layered cuprates in the absence of apical oxygens

    Full text link
    We have investigated the 3d orbital excitations in CaCuO2 (CCO), Nd2CuO4 (NCO) and La2CuO4 (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the dxy orbital clearly disperse, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. We show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.Comment: 18 pages, 7 figure

    Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    Full text link
    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements

    First measurement of direct f0(980)f_0(980) photoproduction on the proton

    Get PDF
    We report on the results of the first measurement of exclusive f0(980)f_0(980) meson photoproduction on protons for Eγ=3.03.8E_\gamma=3.0 - 3.8 GeV and t=0.41.0-t = 0.4-1.0 GeV2^2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the π+π\pi^+ \pi^- channel by performing a partial wave analysis of the reaction γppπ+π\gamma p \to p \pi^+ \pi^-. Clear evidence of the f0(980)f_0(980) meson was found in the interference between PP and SS waves at Mπ+π1M_{\pi^+ \pi^-}\sim 1 GeV. The SS-wave differential cross section integrated in the mass range of the f0(980)f_0(980) was found to be a factor of 50 smaller than the cross section for the ρ\rho meson. This is the first time the f0(980)f_0(980) meson has been measured in a photoproduction experiment

    Partial wave analysis of the reaction gamma p -> p omega$ and the search for nucleon resonances

    Full text link
    An event-based partial wave analysis (PWA) of the reaction gamma p -> p omega has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> pi+ pi - pi0. The data confirm the dominance of the t-channel pi0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as well as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2(+) state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive
    corecore