85 research outputs found

    Aryl hydrocarbon receptor deficiency causes the development of chronic obstructive pulmonary disease through the integration of multiple pathogenic mechanisms

    Get PDF
    Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease

    Molecular Fingerprinting and Phytochemical Investigation of <i>Syzygium cumini</i> L. from Different Agro-Ecological Zones of India

    No full text
    Syzygium cumini L. (ver Jamun; BlackBerry) is a native, evergreen multipurpose tree species of India. Besides being a fruit tree and for agroforestry in different regions, it is medicinally important too. This study aimed to determine genetic diversity using molecular and phytochemical markers in sixteen genotypes of Indian S. cumini from different agro-ecological zones. The present study used a combination of ISSR markers and the HPLC technique to explore these genotypes. The results showed a wide genetic diversity range based on the similarity coefficient values observed in S. cumini sixteen accessions from different sites. Four primary phenolic acids were discovered in all the accessions; caffeic acid (CA) was found in high concentrations. The intraspecific association between molecular and phytochemical characteristics was the primary goal of this investigation. By employing gene-specific markers for the route of secondary metabolites (polyphenols) production, it further investigated the progressive research of diversity analysis of polyphenol content in S. cumini accessions, which may also expand its nutraceutical and pharmaceutical utilization

    Erratum to ‘Exploring the cost-effectiveness of high versus low perioperative fraction of inspired oxygen in the prevention of surgical site infections among abdominal surgery patients in three low- and middle-income countries’ [BJA Open 7 (2023) 100207]

    No full text

    Exploring the cost-effectiveness of high versus low perioperative fraction of inspired oxygen in the prevention of surgical site infections among abdominal surgery patients in three low- and middle-income countries

    No full text
    Background: This study assessed the potential cost-effectiveness of high (80-100%) vs low (21-35%) fraction of inspired oxygen (FiO2) at preventing surgical site infections (SSIs) after abdominal surgery in Nigeria, India, and South Africa. Methods: Decision-analytic models were constructed using best available evidence sourced from unbundled data of an ongoing pilot trial assessing the effectiveness of high FiO2, published literature, and a cost survey in Nigeria, India, and South Africa. Effectiveness was measured as percentage of SSIs at 30 days after surgery, a healthcare perspective was adopted, and costs were reported in US dollars ().Results:HighFiO2maybecosteffective(cheaperandeffective).InNigeria,theaveragecostforhighFiO2was). Results: High FiO2 may be cost-effective (cheaper and effective). In Nigeria, the average cost for high FiO2 was 216 compared with 222 for low FiO2 leading to a -6 (95% confidence interval [CI]:&nbsp;-13 to -1) difference in costs. In India, the average cost for high FiO2 was 184comparedwith184 compared with 195 for low FiO2 leading to a&nbsp;-11(9511 (95% CI:&nbsp;-15 to&nbsp;-6)differenceincosts.InSouthAfrica,theaveragecostforhighFiO2was6) difference in costs. In South Africa, the average cost for high FiO2 was 1164 compared with 1257 for low FiO2 leading to a -93 (95% CI:&nbsp;-132 to -65) difference in costs. The high FiO2 arm had few SSIs, 7.33% compared with 8.38% for low FiO2, leading to a&nbsp;-1.05 (95% CI:&nbsp;-1.14 to&nbsp;-0.90) percentage point reduction in SSIs. Conclusion: High FiO2 could be cost-effective at preventing SSIs in the three countries but further data from large clinical trials are required to confirm this

    Jet fragmentation transverse momentum distributions in pp and p-Pb collisions at s \sqrt{s} , sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    Jet fragmentation transverse momentum (jT_{T}) distributions are measured in proton-proton (pp) and proton-lead (p-Pb) collisions at sNN \sqrt{s_{\mathrm{NN}}} = 5.02 TeV with the ALICE experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and electromagnetic calorimeter using the anti-kT_{T} algorithm with resolution parameter R = 0.4 in the pseudorapidity range |η| < 0.25. The jT_{T} values are calculated for charged particles inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured jT_{T} distributions are compared with a variety of parton-shower models. Herwig and Pythia 8 based models describe the data well for the higher jT_{T} region, while they underestimate the lower jT_{T} region. The jT_{T} distributions are further characterised by fitting them with a function composed of an inverse gamma function for higher jT_{T} values (called the “wide component”), related to the perturbative component of the fragmentation process, and with a Gaussian for lower jT_{T} values (called the “narrow component”), predominantly connected to the hadronisation process. The width of the Gaussian has only a weak dependence on jet transverse momentum, while that of the inverse gamma function increases with increasing jet transverse momentum. For the narrow component, the measured trends are successfully described by all models except for Herwig. For the wide component, Herwig and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse momentum region. These measurements set constraints on models of jet fragmentation and hadronisation

    Measurements of the groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV

    No full text
    International audienceThe jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at s \sqrt{s} = 5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η| < 0.9). The anti-kT_{T} algorithm is used with jet resolution parameters R = 0.2 and R = 0.4 for several transverse momentum {p}_{\mathrm{T}}^{\mathrm{ch}} ^{jet} intervals in the 20–100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα_{α}, and groomed jet angularities, λα,g_{α,g}, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α = 1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies.[graphic not available: see fulltext

    Measurement of the Cross Sections of Ξc0\Xi^0_{c} and Ξc+\Xi^+_{c} Baryons and of the Branching-Fraction Ratio BR(Ξc0Ξe+νe\Xi^0_{c} \rightarrow \Xi^-{e}^+\nu_{ e})/BR(Ξc0Ξπ+\Xi^0_{c} \rightarrow \Xi^-\pi^+) in pp collisions at 13 TeV

    No full text
    The pTp_T-differential cross sections of prompt charm-strange baryons Ξc0_c^0 and Ξc+_c^+ were measured at midrapidity (|y|<0.5) in proton-proton (pp) collisions at a center-of-mass energy s\sqrt{s} = 13 TeV with the ALICE detector at the LHC. The Ξc0_c^0 baryon was reconstructed via both the semileptonic decay (Ξ^-e+^+νe_e) and the hadronic decay (Ξ^-π+^+) channels. The Ξc+_c^+ baryon was reconstructed via the hadronic decay (Ξ^-π+^+π+^+) channel. The branching-fraction ratio BR(Ξc0_c^0→Ξ^-e+^+νe_e)/BR(Ξc0_c^0→Ξ^-π+^+) = 1.38±0.14(stat)±0.22(syst) was measured with a total uncertainty reduced by a factor of about 3 with respect to the current world average reported by the Particle Data Group. The transverse momentum (pTp_T) dependence of the Ξc0_c^0- and Ξc+_c^+-baryon production relative to the D0^0 meson and to the Σc0,+,++_c^{0,+,++}- and Λc+_c^+-baryon production are reported. The baryon-to-meson ratio increases toward low pTp_T up to a value of approximately 0.3. The measurements are compared with various models that take different hadronization mechanisms into consideration. The results provide stringent constraints to these theoretical calculations and additional evidence that different processes are involved in charm hadronization in electron-positron (e+^+e^-) and hadronic collisions

    Pseudorapidity distributions of charged particles as a function of mid- and forward rapidity multiplicities in pp collisions at s\sqrt{s} = 5.02, 7 and 13 TeV

    No full text
    The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies s = 5.02\sqrt{s}~=~5.02, 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range (η<1.5|\eta | < 1.5). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval η<1|\eta |<1. The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the latter being less affected by autocorrelations. A detailed comparison with predictions from the PYTHIA 8 and EPOS LHC event generators is also presented. The results can be used to constrain models for particle production as a function of multiplicity in pp collisions

    Multiharmonic Correlations of Different Flow Amplitudes in Pb-Pb Collisions at sNN=2.76\sqrt{s_{_{NN}}}=2.76 TeV

    No full text
    The event-by-event correlations between three flow amplitudes are measured for the first time in Pb-Pb collisions, using higher-order symmetric cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium when compared to correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements since contributions from two-harmonic correlations are explicitly removed in the new observables. A comparison to Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions
    corecore