6 research outputs found

    Tufa sedimentation in changing hydrological conditions : the River Mesa (Spain)

    Get PDF
    The processes controlling tufa deposition along the River Mesa (NE Spain) were studied from April 2003 to September 2009, based on six-monthly monitoring of physical and chemical parameters of the river water and sedimentological characteristics, including deposition rates on tablets. With a mean annual discharge around 1.5m3 /s, the sedimentation rate (mean 2mm/yr) recorded important spatial, seasonal and interannual variations. The river waters are of the calcium bicarbonate type. In this study, three distinct river stretches were distinguished based on the steady groundwater inputs, some of low-thermal nature. Groundwater discharges controlled the water chemical composition, and some sedimentation features too. At each stretch, an increase in pCO2 and conductivity was measured around the spring sites. Decreasing trends in conductivity or alkalinity with high enough saturation values with respect to calcite were only clearly observed in the intermediate stretch, which had higher tufa deposition rates than the other two. Tufa deposition rates were higher in cool (autumn+winter) than in warm (spring+summer) periods. In some low-rainfall warm periods, tufa deposition was inhibited or limited due to the low flow -mainly from groundwater inputs- and to the dryness of some river sites, which indeed favoured erosion during flooding. A decrease in yearly deposition rates from April 2006 onwards paralleled an important reduction in the river discharge. Groundwater inputs, drought periods and flood events should therefore be considered to understand fluvial tufa sedimentation in semi-arid conditions

    ¿La ciudad hostil?

    No full text

    Magnetostratigraphy of the Miocene continental deposits of the Montes de Castejón (central Ebro basin, Spain): geochronological and paleoenvironmental implications

    No full text
    A detailed magnetostratigraphic study has been carried out in the early to middle Miocene distal alluvial and lacustrine sediments of the Montes de Castejón (central Ebro Basin). The study was based on the analysis of 196 magnetostratigraphic sites sampled along a stratigraphic interval of about 240 meters. Local magnetostratigraphy yielded a sequence of 12 magnetozones (6 normal and 6 reverse) which could be correlated with the Geomagnetic Polarity Time Scale (GPTS) interval C5Cr to C5AD (between 17 and 14.3 Ma.). The sampled sedimentary sequences include the boundary between two tectosedimentary units (TSU, T5 and T6) already defined in the Ebro Basin. The magnetostratigraphy of the Montes de Castejón allows to date the T5/T6 TSU boundary at 16.14 Ma, within chron C5Cn.1n. This magnetostratigraphy also allows us to analyse in detail as well as to discuss the variations in sedimentation rates through space and time between different lacustrine environments: Outer carbonate lacustrine fringes and distal alluvial plains (Montes de Castejón sections) show higher sedimentation rates than offshore lacustrine areas (San Caprasio section, 50 km east of Montes de Castejón)

    Magnetostratigraphy of the Miocene continental deposits of the Montes de Castejón (central Ebro basin, Spain): geochronological and paleoenvironmental implications

    No full text
    A detailed magnetostratigraphic study has been carried out in the early to middle Miocene distal alluvial and lacustrine sediments of the Montes de Castejón (central Ebro Basin). The study was based on the analysis of 196 magnetostratigraphic sites sampled along a stratigraphic interval of about 240 meters. Local magnetostratigraphy yielded a sequence of 12 magnetozones (6 normal and 6 reverse) which could be correlated with the Geomagnetic Polarity Time Scale (GPTS) interval C5Cr to C5AD (between 17 and 14.3 Ma.). The sampled sedimentary sequences include the boundary between two tectosedimentary units (TSU, T5 and T6) already defined in the Ebro Basin. The magnetostratigraphy of the Montes de Castejón allows to date the T5/T6 TSU boundary at 16.14 Ma, within chron C5Cn.1n. This magnetostratigraphy also allows us to analyse in detail as well as to discuss the variations in sedimentation rates through space and time between different lacustrine environments: Outer carbonate lacustrine fringes and distal alluvial plains (Montes de Castejón sections) show higher sedimentation rates than offshore lacustrine areas (San Caprasio section, 50 km east of Montes de Castejón)

    Tufa sedimentation in changing hydrological conditions: the River Mesa (Spain)

    Get PDF
    The processes controlling tufa deposition along the River Mesa (NE Spain) were studied from April 2003 to September 2009, based on six-monthly monitoring of physical and chemical parameters of the river water and sedimentological characteristics, including deposition rates on tablets. With a mean annual discharge around 1.5m3 /s, the sedimentation rate (mean 2mm/yr) recorded important spatial, seasonal and interannual variations. The river waters are of the calcium bicarbonate type. In this study, three distinct river stretches were distinguished based on the steady groundwater inputs, some of low-thermal nature. Groundwater discharges controlled the water chemical composition, and some sedimentation features too. At each stretch, an increase in pCO2 and conductivity was measured around the spring sites. Decreasing trends in conductivity or alkalinity with high enough saturation values with respect to calcite were only clearly observed in the intermediate stretch, which had higher tufa deposition rates than the other two. Tufa deposition rates were higher in cool (autumn+winter) than in warm (spring+summer) periods. In some low-rainfall warm periods, tufa deposition was inhibited or limited due to the low flow �mainly from groundwater inputs� and to the dryness of some river sites, which indeed favoured erosion during flooding. A decrease in yearly deposition rates from April 2006 onwards paralleled an important reduction in the river discharge. Groundwater inputs, drought periods and flood events should therefore be considered to understand fluvial tufa sedimentation in semi-arid condition

    Tufa sedimentation in changing hydrological conditions : the River Mesa (Spain)

    No full text
    The processes controlling tufa deposition along the River Mesa (NE Spain) were studied from April 2003 to September 2009, based on six-monthly monitoring of physical and chemical parameters of the river water and sedimentological characteristics, including deposition rates on tablets. With a mean annual discharge around 1.5m3 /s, the sedimentation rate (mean 2mm/yr) recorded important spatial, seasonal and interannual variations. The river waters are of the calcium bicarbonate type. In this study, three distinct river stretches were distinguished based on the steady groundwater inputs, some of low-thermal nature. Groundwater discharges controlled the water chemical composition, and some sedimentation features too. At each stretch, an increase in pCO2 and conductivity was measured around the spring sites. Decreasing trends in conductivity or alkalinity with high enough saturation values with respect to calcite were only clearly observed in the intermediate stretch, which had higher tufa deposition rates than the other two. Tufa deposition rates were higher in cool (autumn+winter) than in warm (spring+summer) periods. In some low-rainfall warm periods, tufa deposition was inhibited or limited due to the low flow -mainly from groundwater inputs- and to the dryness of some river sites, which indeed favoured erosion during flooding. A decrease in yearly deposition rates from April 2006 onwards paralleled an important reduction in the river discharge. Groundwater inputs, drought periods and flood events should therefore be considered to understand fluvial tufa sedimentation in semi-arid conditions
    corecore