80 research outputs found

    GDNF Selectively Induces Microglial Activation and Neuronal Survival in CA1/CA3 Hippocampal Regions Exposed to NMDA Insult through Ret/ERK Signalling

    Get PDF
    The glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1) hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2) identity of GDNF-responsive hippocampal cells, (3) transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA) by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity

    Ret is essential to mediate GDNF’s neuroprotective and neuroregenerative effect in a Parkinson disease mouse model

    Get PDF
    Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF’s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF’s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD

    Hibernation-like state induced by an opioid peptide protects against experimental stroke

    Get PDF
    BACKGROUND: Delta opioid peptide [D-ala2,D-leU5]enkephalin (DADLE) induces hibernation in summer ground squirrels, and enhances preservation and survival of isolated or transplanted lungs and hearts. In the present study, we investigated the protective effect of DADLE in the central nervous system. RESULTS: Adult Sprague-Dawley rats were pretreated with DADLE (4 mg/kg every 2 h x 4 injections, i.p.) or saline prior to unilateral occlusion of the middle cerebral artery (MCA). Daily behavioral tests revealed that ischemic animals treated with DADLE did not show any significant behavioral dysfunctions compared with saline-treated ischemic animals. Opioid antagonists only transiently inhibited the protective effect of DADLE, indicating the participation of non-opioid mechanisms in DADLE neuroprotection. Histological examination using triphenyltetrazolium chloride (TTC) revealed that brains from ischemic animals treated with DADLE, either alone or with adjuvant opioid blockers, exhibited almost completely intact striata. In contrast, brains from ischemic animals that received saline showed significant infarction in the lateral striatum. Analyses of apoptotic cell death revealed a significant increase in the p-53 mRNA expression in the striatum of ischemic animals that received saline, while those that received DADLE exhibited near normal striatal p-53 expression. This protective effect was accompanied by significant increments in protein levels of glial cell line-derived neurotrophic factor in the striatum of DADLE-treated ischemic animals. CONCLUSION: These results indicate that DADLE protected against necrotic and apoptotic cell death processes associated with ischemia-reperfusion injury. The present study demonstrates that delta opioids are crucially involved in stroke, suggesting that the opioid system is important in the study of brain injury and protection

    Reduced Proliferation in the Adult Mouse Subventricular Zone Increases Survival of Olfactory Bulb Interneurons

    Get PDF
    Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons

    Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development

    Get PDF
    The growth factor family of neurotrophins has major roles both inside and outside the nervous system. Here, we report a detailed histological analysis of key phenotypes generated by the ablation of the Kinase D interacting substrate of 220 kDa/Ankyrin repeat-rich membrane spanning (Kidins220/ARMS) protein, a membrane-anchored scaffold for the neurotrophin receptors Trk and p75NTR. Kidins220 is important for heart development, as shown by the severe defects in the outflow tract and ventricle wall formation displayed by the Kidins220 mutant mice. Kidins220 is also important for peripheral nervous system development, as the loss of Kidins220 in vivo caused extensive apoptosis of DRGs and other sensory ganglia. Moreover, the neuronal-specific deletion of this protein leads to early postnatal death, showing that Kidins220 also has a critical function in the postnatal brain

    Sprouty4 Is an Endogenous Negative Modulator of TrkA Signaling and Neuronal Differentiation Induced by NGF

    Get PDF
    The Sprouty (Spry) family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs). Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A), in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF

    NGF Causes TrkA to Specifically Attract Microtubules to Lipid Rafts

    Get PDF
    Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75NTR collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75NTR both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75NTR. When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75NTR, was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75NTR partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance

    RET PLCγ Phosphotyrosine Binding Domain Regulates Ca2+ Signaling and Neocortical Neuronal Migration

    Get PDF
    The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015

    Phenotypic Switching of Nonpeptidergic Cutaneous Sensory Neurons following Peripheral Nerve Injury

    Get PDF
    In adult mammals, the phenotype of half of all pain-sensing (nociceptive) sensory neurons is tonically modulated by growth factors in the glial cell line-derived neurotrophic factor (GDNF) family that includes GDNF, artemin (ARTN) and neurturin (NRTN). Each family member binds a distinct GFRα family co-receptor, such that GDNF, NRTN and ARTN bind GFRα1, -α2, and -α3, respectively. Previous studies revealed transcriptional regulation of all three receptors in following axotomy, possibly in response to changes in growth factor availability. Here, we examined changes in the expression of GFRα1-3 in response to injury in vivo and in vitro. We found that after dissociation of adult sensory ganglia, up to 27% of neurons die within 4 days (d) in culture and this can be prevented by nerve growth factor (NGF), GDNF and ARTN, but not NRTN. Moreover, up-regulation of ATF3 (a marker of neuronal injury) in vitro could be prevented by NGF and ARTN, but not by GDNF or NRTN. The lack of NRTN efficacy was correlated with rapid and near-complete loss of GFRα2 immunoreactivity. By retrogradely-labeling cutaneous afferents in vivo prior to nerve cut, we demonstrated that GFRα2-positive neurons switch phenotype following injury and begin to express GFRα3 as well as the capsaicin receptor, transient receptor potential vanilloid 1(TRPV1), an important transducer of noxious stimuli. This switch was correlated with down-regulation of Runt-related transcription factor 1 (Runx1), a transcription factor that controls expression of GFRα2 and TRPV1 during development. These studies show that NRTN-responsive neurons are unique with respect to their plasticity and response to injury, and suggest that Runx1 plays an ongoing modulatory role in the adult
    • …
    corecore