55 research outputs found

    Mobility recorded by wearable devices and gold standards: the Mobilise-D procedure for data standardization

    Get PDF
    Wearable devices are used in movement analysis and physical activity research to extract clinically relevant information about an individual's mobility. Still, heterogeneity in protocols, sensor characteristics, data formats, and gold standards represent a barrier for data sharing, reproducibility, and external validation. In this study, we aim at providing an example of how movement data (from the real-world and the laboratory) recorded from different wearables and gold standard technologies can be organized, integrated, and stored. We leveraged on our experience from a large multi-centric study (Mobilise-D) to provide guidelines that can prove useful to access, understand, and re-use the data that will be made available from the study. These guidelines highlight the encountered challenges and the adopted solutions with the final aim of supporting standardization and integration of data in other studies and, in turn, to increase and facilitate comparison of data recorded in the scientific community. We also provide samples of standardized data, so that both the structure of the data and the procedure can be easily understood and reproduced

    Dual-Task Treadmill Training for the Prevention of Falls in Parkinson's Disease: Rationale and Study Design

    Get PDF
    Various factors, such as fear of falling, postural instability, and altered executive function, contribute to the high risk of falling in Parkinson's disease (PD). Dual-task training is an established method to reduce this risk. Motor-perceptual task combinations typically require a patient to walk while simultaneously engaging in a perceptual task. Motor-executive dual-tasking (DT) combines locomotion with executive function tasks. One augmented reality treadmill training (AR-TT) study revealed promising results of a perceptual dual-task training with a markedly reduced frequency of falls especially in patients with PD. We here propose to compare the effects of two types of concurrent tasks, perceptual and executive, on high-intensity TT). Patients will be trained with TT alone, in combination with an augmented reality perceptual DT (AR-TT) or with an executive DT (Random Number Generation; RNG-TT). The results are expected to inform research on therapeutic strategies for the training of balance in PD

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device's walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson's Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and - 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application.Trial registration: ISRCTN - 12246987

    Protocol for the PreventIT feasibility randomised controlled trial of a lifestyle-integrated exercise intervention in young older adults

    Get PDF
    Introduction The European population is rapidly ageing. In order to handle substantial future challenges in the healthcare system, we need to shift focus from treatment towards health promotion. The PreventIT project has adapted the Lifestyle-integrated Exercise (LiFE) programme and developed an intervention for healthy young older adults at risk of accelerated functional decline. The intervention targets balance, muscle strength and physical activity, and is delivered either via a smartphone application (enhanced LiFE, eLiFE) or by use of paper manuals (adapted LiFE, aLiFE). Methods and analysis The PreventIT study is a multicentre, three-armed feasibility randomised controlled trial, comparing eLiFE and aLiFE against a control group that receives international guidelines of physical activity. It is performed in three European cities in Norway, Germany, and The Netherlands. The primary objective is to assess the feasibility and usability of the interventions, and to assess changes in daily life function as measured by the Late-Life Function and Disability Instrument scale and a physical behaviour complexity metric. Participants are assessed at baseline, after the 6 months intervention period and at 1 year after randomisation. Men and women between 61 and 70 years of age are randomly drawn from regional registries and respondents screened for risk of functional decline to recruit and randomise 180 participants (60 participants per study arm). Ethics and dissemination Ethical approval was received at all three trial sites. Baseline results are intended to be published by late 2018, with final study findings expected in early 2019. Subgroup and further in-depth analyses will subsequently be published. Trial registration number NCT03065088; Pre-results

    Design and validation of a multi-task, multi-context protocol for real-world gait simulation

    Get PDF
    Background: Measuring mobility in daily life entails dealing with confounding factors arising from multiple sources, including pathological characteristics, patient specific walking strategies, environment/context, and purpose of the task. The primary aim of this study is to propose and validate a protocol for simulating real-world gait accounting for all these factors within a single set of observations, while ensuring minimisation of participant burden and safety. Methods: The protocol included eight motor tasks at varying speed, incline/steps, surface, path shape, cognitive demand, and included postures that may abruptly alter the participants’ strategy of walking. It was deployed in a convenience sample of 108 participants recruited from six cohorts that included older healthy adults (HA) and participants with potentially altered mobility due to Parkinson’s disease (PD), multiple sclerosis (MS), proximal femoral fracture (PFF), chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF). A novelty introduced in the protocol was the tiered approach to increase difficulty both within the same task (e.g., by allowing use of aids or armrests) and across tasks. Results: The protocol proved to be safe and feasible (all participants could complete it and no adverse events were recorded) and the addition of the more complex tasks allowed a much greater spread in walking speeds to be achieved compared to standard straight walking trials. Furthermore, it allowed a representation of a variety of daily life relevant mobility aspects and can therefore be used for the validation of monitoring devices used in real life. Conclusions: The protocol allowed for measuring gait in a variety of pathological conditions suggests that it can also be used to detect changes in gait due to, for example, the onset or progression of a disease, or due to therapy. Trial registration: ISRCTN—12246987

    Technical validation of real-world monitoring of gait: a multicentric observational study

    Get PDF
    Introduction: Existing mobility endpoints based on functional performance, physical assessments and patient self-reporting are often affected by lack of sensitivity, limiting their utility in clinical practice. Wearable devices including inertial measurement units (IMUs) can overcome these limitations by quantifying digital mobility outcomes (DMOs) both during supervised structured assessments and in real-world conditions. The validity of IMU-based methods in the real- world, however, is still limited in patient populations. Rigorous validation procedures should cover the device metrological verification, the validation of the algorithms for the DMOs computation specifically for the population of interest and in daily life situations, and the users’ perspective on the device. Methods and analysis: This protocol was designed to establish the technical validity and patient acceptability of the approach used to quantify digital mobility in the real world by Mobilise-D, a consortium funded by the European Union (EU) as part of the Innovative Medicine Initiative, aiming at fostering regulatory approval and clinical adoption of DMOs. After defining the procedures for the metrological verification of an IMU-based device, the experimental procedures for the validation of algorithms used to calculate the DMOs are presented. These include laboratory and real-world assessment in 120 participants from five groups: healthy older adults; chronic obstructive pulmonary disease, Parkinson’s disease, multiple sclerosis, proximal femoral fracture and congestive heart failure. DMOs extracted from the monitoring device will be compared with those from different reference systems, chosen according to the contexts of observation. Questionnaires and interviews will evaluate the users’ perspective on the deployed technology and relevance of the mobility assessment. Ethics and dissemination: The study has been granted ethics approval by the centre’s committees (London—Bloomsbury Research Ethics committee; Helsinki Committee, Tel Aviv Sourasky Medical Centre; Medical Faculties of The University of Tübingen and of the University of Kiel). Data and algorithms will be made publicly available

    A multi-sensor wearable system for the assessment of diseased gait in real-world conditions

    Get PDF
    Introduction: Accurately assessing people’s gait, especially in real-world conditions and in case of impaired mobility, is still a challenge due to intrinsic and extrinsic factors resulting in gait complexity. To improve the estimation of gait-related digital mobility outcomes (DMOs) in real-world scenarios, this study presents a wearable multi-sensor system (INDIP), integrating complementary sensing approaches (two plantar pressure insoles, three inertial units and two distance sensors).Methods: The INDIP technical validity was assessed against stereophotogrammetry during a laboratory experimental protocol comprising structured tests (including continuous curvilinear and rectilinear walking and steps) and a simulation of daily-life activities (including intermittent gait and short walking bouts). To evaluate its performance on various gait patterns, data were collected on 128 participants from seven cohorts: healthy young and older adults, patients with Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, congestive heart failure, and proximal femur fracture. Moreover, INDIP usability was evaluated by recording 2.5-h of real-world unsupervised activity.Results and discussion: Excellent absolute agreement (ICC >0.95) and very limited mean absolute errors were observed for all cohorts and digital mobility outcomes (cadence ≤0.61 steps/min, stride length ≤0.02 m, walking speed ≤0.02 m/s) in the structured tests. Larger, but limited, errors were observed during the daily-life simulation (cadence 2.72–4.87 steps/min, stride length 0.04–0.06 m, walking speed 0.03–0.05 m/s). Neither major technical nor usability issues were declared during the 2.5-h acquisitions. Therefore, the INDIP system can be considered a valid and feasible solution to collect reference data for analyzing gait in real-world conditions

    Real-world speed estimation using single trunk IMU: methodological challenges for impaired gait patterns

    No full text
    Walking speed (WS) is recognized as an important dimension of functional health and a candidate endpoint for clinical trials. To be adopted as a powerful outcome measure in clinical assessment, WS should be estimated pervasively and accurately in the real-life context. Although current state of the art points to possible solutions, e.g., by using pairing of wearable sensors with dedicated algorithms, the accuracy and robustness of existing algorithms in challenging situations should be carefully considered. This study highlights the main methodological issues for WS estimation using single inertial sensor fixed on trunk (chest/low back) and data recorded in a sample of stroke patients with impaired mobility

    Detection and Classification of Postural Transitions in Real-World Conditions

    No full text
    This study proposes a new robust classifier for sit-to-stand (SiSt) and stand-to-sit (StSt) detection in daily activity. The monitoring system consists of a single inertial sensor placed on the trunk. By using dynamic time warping, the trunk acceleration patterns of SiSt and StSi are classified based on their similarity with specific templates. The classification algorithm is validated with actual data obtained in a real-world environment (five healthy subjects and five chronic pain patients); the best accuracy is obtained through using a custom template defined for each subject (>95% for healthy subjects and 89% for chronic pain). Real-world examinations are found to be preferable because after validating results collected in both real-world and laboratory conditions, the controlled conditions' predictions are too optimistic. Finally, the potential of the new method in clinical evaluation is studied in both healthy and frail elderly subjects. Frail elderly participants show a significantly lower rate of postural transitions, longer SiSt duration, and lower SiSt trunk tilt and acceleration compared to healthy elderly subjects. We conclude that the proposed wearable system provides a simple method to detect and characterize postural transitions in healthy, chronic pain, and frail elderly subjects
    corecore