156 research outputs found

    Chapitres des disciples d'Evagre dans un manuscrit grec du musée Bénaki d'Athènes

    Get PDF

    Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding

    Get PDF
    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages’ pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages’ core and low non-specific binding to the cages’ outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage’s core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently available approaches and provides a new route to design tailored and well-controlled hybrid nanoparticles

    Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging

    Get PDF
    The biocompatibility and performance of reagents for in vivo contrast-enhanced magnetic resonance imag-ing are essential for their translation to the clinic. The quality of the surface coating of nanoparticle-based MRI contrast agents, such as ultra-small superparamagnetic iron oxide nanoparticles (USPIONs), is criti-cal to ensure high colloidal stability in biological environments, improved magnetic performance and dis-persion in circulatory fluids and tissues. Herein, we report the design of a library of 21 peptides and lig-ands and identify highly stable self-assembled monolayers on the USPIONs surface. A total of 86 differ-ent peptide coated USPIONs are prepared and selected using several stringent criteria, e.g., stability against electrolyte-induced aggregation in physiological conditions, prevention of non-specific binding to cells, absence of cellular toxicity and contrast-enhanced in vivo MRI. The bis-phosphorylated peptide 2PG-S∗VVVT-PEG4-ol provides highest biocompatibility and performance for USPIONs, with no de-tectable toxicity or adhesion to live cells. The 2PG-S∗VVVT-PEG4-ol coated USPIONs show enhanced magnetic resonance properties, r1 (2.4 mM-1.s-1) and r2 (217.8 mM-1.s-1) relaxivities, and greater r2/r1 relaxivity ratios (>90), when compared to commercially available MRI contrast agents. Furthermore, we demonstrate the utility of 2PG-S∗VVVT-PEG4-ol coated USPIONs as a T2 contrast agent for in vivo MRI applica-tions. High contrast enhancement of the liver is achieved as well as detection of liver tumors, with signifi-cant improvement of the contrast-to-noise ratio of tumor-to-liver contrast. It is envisaged that the reported peptide coated USPIONs have the potential to allow for the specific targeting of tumors, and hence early detection of cancer by MRI

    Blind testing cross-linking/mass spectrometry under the auspices of the 11th critical assessment of methods of protein structure prediction (CASP11)

    Get PDF
    Determining the structure of a protein by any method requires various contributions from experimental and computational sides. In a recent study, high-density cross-linking/mass spectrometry (HD-CLMS) data in combination with ab initio structure prediction determined the structure of human serum albumin (HSA) domains, with an RMSD to X-ray structure of up to 2.5 Å, or 3.4 Å in the context of blood serum. This paper reports the blind test on the readiness of this technology through the help of Critical Assessment of protein Structure Prediction (CASP). We identified between 201-381 unique residue pairs at an estimated 5% FDR (at link level albeit with missing site assignment precision evaluation), for four target proteins. HD-CLMS proved reliable once crystal structures were released. However, improvements in structure prediction using cross-link data were slight. We identified two reasons for this. Spread of cross-links along the protein sequence and the tightness of the spatial constraints must be improved. However, for the selected targets even ideal contact data derived from crystal structures did not allow modellers to arrive at the observed structure. Consequently, the progress of HD-CLMS in conjunction with computational modeling methods as a structure determination method, depends on advances on both arms of this hybrid approach

    Arte de descubrir los manantiales

    No full text

    Conférence de M. Joseph Paramelle

    No full text
    Paramelle Joseph. Conférence de M. Joseph Paramelle. In: École pratique des hautes études, Section des sciences religieuses. Annuaire. Tome 87, 1978-1979. 1978. p. 339

    Conférence de M. Joseph Paramelle

    No full text
    Paramelle Joseph. Conférence de M. Joseph Paramelle. In: École pratique des hautes études, Section des sciences religieuses. Annuaire. Tome 91, 1982-1983. 1982. pp. 407-415

    Conférence de M. Joseph Paramelle

    No full text
    Paramelle Joseph. Conférence de M. Joseph Paramelle. In: École pratique des hautes études, Section des sciences religieuses. Annuaire. Tome 90, 1981-1982. 1981. p. 357
    corecore