13 research outputs found

    Optimum Waveform Selection for Target State Estimation in the Joint Radar-Communication System

    No full text
    The widespread usage of the Radio Frequency (RF) spectrum for wireless and mobile communication systems generated a significant spectrum scarcity. The Joint Radar-Communication System (JRCS) provides a framework to simultaneously utilize the allocated radar spectrum for sensing and communication purposes. Generally, a Successive Interference Cancellation (SIC) based receiver is applied to mitigate mutual interference in the JRCS configuration. However, this SIC receiver model introduces a communication residual component. In response to this issue, the article presents a novel measurement model based on communication residual components for various radar waveforms. The radar system's performance within the JRCS framework is then evaluated using the Fisher Information Matrix (FIM). The radar waveforms considered in this investigation are rectangular pulse, triangular pulse, Gaussian pulse, Linear Frequency Modulated (LFM) pulse, LFM-Gaussian pulse, and Non-Linear Frequency Modulated (NLFM) pulse. After that, the Kalman filter is deployed to estimate the target kinematics (range and range rate) of a single linearly moving target for different waveforms. Additionally, range and range rate estimation errors are quantified using the Root Mean Square Error (RMSE) metric. Furthermore, the Posterior Cramer-Rao Lower Bound (PCRLB) is derived to validate the estimation accuracy of various waveforms. The simulation results show that the range and range rate estimation errors are within the PCRLB limit at all time instants for all the designated waveforms. The results further reveal that the NLFM pulse waveform provides improved range and range rate error performance compared to all other waveforms

    Not Available

    No full text
    Not AvailableMagur Clarias batrachus is an indigenous catfish, commonly found in India, Nepal, Bhutan and Bangladesh. Presently, the populations of magur have declined rapidly in their natural habitat mainly due to overexploitation and habitat degradation. Understanding the population genetic structure of the species has significance in improvement of stocks and in conservation of the species. In the present study, simple sequence repeat (SSR) markers were used to differentiate the populations of magur, collected from three geographic locations. For this, a total of 31,814 SSRs were mined from the de novo assembled pooled of whole genome sequence data of C. batrachus. A bioinformatics pipeline with stringent criteria was applied to analyze the data which resulted in selection of 30,142 microsatellite loci falling in the intergenic region. Out of the 25 loci selected for primer development, 16 loci were successfully amplified and 9 loci were found to be polymorphic in this species. The average observed as well as expected heterozygosity in the loci across different stocks varied from 0.652 to 0.688 and 0.864 to 0.873, respectively. These three populations were further segregated into two clusters based on the NJ genetic distance. The Lucknow population formed one cluster, while the Bhubaneswar and Kolkata populations constituted another cluster. A comparable finding was also deduced from the STRUCTURE analyses. The results revealed significant variation among the populations of C. batrachus under study.Department of Biotechnology, Ministry of Science and Technology,Gov. of India, New Delhi, India vide Sanction Grant No. BT/PR3688/AAQ/3/571/201

    Not Available

    No full text
    Not AvailableThe walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering 94% of estimated genome with 9.88Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23,748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFE) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, detoxification, etc. were identified and critically analysed. The analysis clearly indicated that C. magur genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians’ counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but will also be very helpful in such studies in other catfishes.Not Availabl

    Not Available

    No full text
    Not AvailableThe walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering 94% of estimated genome with 9.88Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23,748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFE) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, detoxification, etc. were identified and critically analysed. The analysis clearly indicated that C. magur genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians’ counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but will also be very helpful in such studies in other catfishes.Not Availabl

    Not Available

    No full text
    Not AvailableThe walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3484 scaffolds covering ~94% of estimated genome with 9.88 Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFÉ) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, and detoxification etc. were identified and critically analyzed. The analysis clearly indicated that C. magur genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians’ counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but also be very helpful in such studies in other catfishes.Not Availabl

    Not Available

    No full text
    Not Availablewe report here the draft genome of rohu carp and associated genomics resources. Performing phylogenetic analysis, we show that rohu forms a sister group relationship with all remaining otophysans. The draft genome of rohu and SNPs generated in the present study represent essential resource for genetic improvement of important performance traits in this species. Besides, the information generated will provide foundation for future research in evolutionary biology and comparative genomics.Not Availabl

    Not Available

    No full text
    Not AvailableHere we report for the first time the draft genome of Indian major carp, rohu widely cultured in Indian subcontinent. The scaffold N50 was found to be 1.95 Mb and there were 26,400 protein coding genes and 40.63% repeats. Resequencing of 10 riverine rohu populations identified ~5 million SNPs which will provide a valuable resource for undertaking genome wide association studies, genomic selection, population genomics and fine-mapping of QTLs in this species. Phylogenetic analysis taking protein sequences of 335 single copy genes of 14 Otophysans revealed that rohu carp (Labeoninae) was at a position equidistant to the other species in the Otophysi clade, forming a sister group. All the six families and four subfamilies under the four otophysan lineages were monophyletic.Not Availabl
    corecore