5 research outputs found

    Comparison of theory-based and semi-empirical transport modelling in JET plasmas with ITBs

    No full text
    The theory-based Weiland transport model has been applied to JET discharges with internal transport barriers (ITBs) for the first time. The agreement of the modelling results with the experiments has been found to be comparable with the agreement of the modelling results produced by the semi-empirical Bohm/gyro-Bohm transport model. Weiland model overestimates the width of the ITB and the electron temperature. There is evidence that the density gradient in the Weiland model plays a more important role in governing the ITB formation dynamics for JET discharges than the suppression of turbulence by the omega(ExB) flow shearing rate

    Comparison of theory-based and semi-empirical transport modelling in JET plasmas with ITBs

    No full text
    The theory-based Weiland transport model has been applied to JET discharges with internal transport barriers (ITBs) for the first time. The agreement of the modelling results with the experiments has been found to be comparable with the agreement of the modelling results produced by the semi-empirical Bohm/gyro-Bohm transport model. Weiland model overestimates the width of the ITB and the electron temperature. There is evidence that the density gradient in the Weiland model plays a more important role in governing the ITB formation dynamics for JET discharges than the suppression of turbulence by the omega(ExB) flow shearing rate

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019-2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019-2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (alpha) physics in the coming D-T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D-T benefited from the highest D-D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER
    corecore