96 research outputs found

    Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions

    Get PDF
    This paper presents the development of the light weight Phenolic Impregnated Carbon Ablators (PICA) and its thermal performance in a simulated heating environment for planetary entry vehicles. The PICA material was developed as a member of the Light Weight Ceramic Ablators (LCA's), and the manufacturing process of this material has since been significantly improved. The density of PICA material ranges from 14 to 20 lbm/ft(exp 3), having uniform resin distribution with and without a densified top surface. The thermal performance of PICA was evaluated in the Ames arc-jet facility at cold wall heat fluxes from 375 to 2,960 BtU/ft(exp 2)-s and surface pressures of 0.1 to 0.43 atm. Heat loads used in these tests varied from 5,500 to 29,600 BtU/ft(exp 2) and are representative of the entry conditions of the proposed Discovery Class Missions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was also measured by using a template and a height gage. The ablation characteristics and efficiency of PICA are quantified by using the effective heat of ablation, and the thermal penetration response is evaluated from the thermal soak data. In addition, a comparison of thermal performance of standard and surface densified PICA is also discussed

    miRNA in situ hybridization in circulating tumor cells - MishCTC

    Get PDF
    irculating tumor cells (CTCs) must be phenotypically and genetically characterized before they can be utilized in clinical applications. Here, we present the first protocol for the detection of miRNAs in CTCs using in situ hybridization (ISH) combined with immunomagnetic selection based on cytokeratin (CK) expression and immunocytochemistry. Locked-Nucleic Acid (LNA) probes associated with an enzyme-labeled fluorescence (ELF) signal amplification approach were used to detect miRNA-21 in CTCs. This protocol was optimized using both epithelial tumor (MDA-MB468) and epithelial non-tumor (MCF-10A) cell lines, and miRNA-21 was selected as the target miRNA because of its known role as an onco-miRNA. Hematopoietic cells do not express miRNA-21; thus, miRNA-21 is an ideal marker for detecting CTCs. Peripheral blood samples were taken from 25 cancer patients and these samples were analyzed using our developed protocol. Of the 25 samples, 11 contained CTCs. For all 11 CTC-positive samples, the isolated CTCs expressed both CK and miRNA-21. Finally, the protocol was applied to monitor miRNA-21 expression in epithelial to mesenchymal transition (EMT)-induced MCF-7 cells, an epithelial tumor cell line. CK expression was lost in these cells, whereas miRNA-21 was still expressed, suggesting that miRNA-21 might be a good marker for detecting CTCs with an EMT phenotype.JJDM thanks the Spanish Ministerio de EconomĂ­a y Competitividad for a RamĂłn y Cajal Fellowship (Grant CTQ2012-34778). This research was partially supported by Marie Curie Career Integration Grants within the 7th European Community Framework Program (FP7-PEOPLE-2011-CIG-Project Number 294142 to RMSM and FP7-PEOPLE-2012-CIG-Project Number 322276 toJJDM). Thisresearch wasalso partially supported by Consejeria de Salud de la Junta de Andalucı ́ a (PI0294-2012)

    α-intercalated cells defend the urinary system from bacterial infection

    Get PDF
    {alpha}–Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E. coli and responded by acidifying the urine and secreting the bacteriostatic protein lipocalin 2 (LCN2; also known as NGAL). A-IC–dependent LCN2 secretion required TLR4, as mice expressing an LPS-insensitive form of TLR4 expressed reduced levels of LCN2. The presence of LCN2 in urine was both necessary and sufficient to control the urinary tract infection through iron sequestration, even in the harsh condition of urine acidification. In mice lacking A-ICs, both urinary LCN2 and urinary acidification were reduced, and consequently bacterial clearance was limited. Together these results indicate that A-ICs, which are known to regulate acid-base metabolism, are also critical for urinary defense against pathogenic bacteria. They respond to both cystitis and pyelonephritis by delivering bacteriostatic chemical agents to the lower urinary system

    Urine/Plasma Neutrophil Gelatinase Associated Lipocalin Ratio Is a Sensitive and Specific Marker of Subclinical Acute Kidney Injury in Mice

    Get PDF
    Background Detection of acute kidney injury (AKI) is still a challenge if conventional markers of kidney function are within reference range. We studied the sensitivity and specificity of NGAL as an AKI marker at different degrees of renal ischemia. Methods Male C57BL/6J mice were subjected to 10-, 20- or 30-min unilateral renal ischemia, to control operation or no operation, and AKI was evaluated 1 day later by histology, immunohistochemistry, BUN, creatinine, NGAL (plasma and urine) and renal NGAL mRNA expression. Results A short (10-min) ischemia did not alter BUN or kidney histology, but elevated plasma and urinary NGAL level and renal NGAL mRNA expression although to a much smaller extent than longer ischemia. Surprisingly, control operation elevated plasma NGAL and renal NGAL mRNA expression to a similar extent as 10-min ischemia. Further, the ratio of urine to plasma NGAL was the best parameter to differentiate a 10-min ischemic injury from control operation, while it was similar in the non and control-operated groups. Conclusions These results suggest that urinary NGAL excretion and especially ratio of urine to plasma NGAL are sensitive and specific markers of subclinical acute kidney injury in mice

    A dexamethasone prodrug reduces the renal macrophage response and provides enhanced resolution of established murine lupus nephritis

    Get PDF
    We evaluated the ability of a macromolecular prodrug of dexamethasone (P-Dex) to treat lupus nephritis in (NZB × NZW)F1 mice. We also explored the mechanism underlying the anti-inflammatory effects of this prodrug. P-Dex eliminated albuminuria in most (NZB × NZW)F1 mice. Furthermore, P-Dex reduced the incidence of severe nephritis and extended lifespan in these mice. P-Dex treatment also prevented the development of lupus-associated hypertension and vasculitis. Although P-Dex did not reduce serum levels of anti-dsDNA antibodies or glomerular immune complexes, P-Dex reduced macrophage recruitment to the kidney and attenuated tubulointerstitial injury. In contrast to what was observed with free dexamethasone, P-Dex did not induce any deterioration of bone quality. However, P-Dex did lead to reduced peripheral white blood cell counts and adrenal gland atrophy. These results suggest that P-Dex is more effective and less toxic than free dexamethasone for the treatment of lupus nephritis in (NZB × NZW)F1 mice. Furthermore, the data suggest that P-Dex may treat nephritis by attenuating the renal inflammatory response to immune complexes, leading to decreased immune cell infiltration and diminished renal inflammation and injury

    Mutations in DSTYK and dominant urinary tract malformations.

    Get PDF
    ABSTRACT Introduction Congenital abnormalities of the kidney of the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and their etiology is poorly understood. Methods We performed genome-wide linkage analysis and whole-exome sequencing in a family with autosomal dominant congenital abnormalities of the kidney of the urinary tract (7 affected family members). We also performed sequence analysis in 311 unrelated patients, as well as histologic and functional studies. Results Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single rare deleterious variant within these linkage intervals, a heterozygous splice-site mutation in dual serine/threonine and tyrosine protein kinase (DSTYK). This variant, which resulted in aberrant gene product splicing, was present in all affected family members. Additional independent DSTYK mutations, including nonsense and splice-site mutations, were detected among 7/311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in multi-organ developmental defects, resembling loss of fibroblast growth factor (FGF) signaling. Consistent with this finding, DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. Finally, DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated ERK-phosphorylation, the principal signal downstream of receptor tyrosine kinases. Conclusions We detected DSTYK mutations in 2.2% of patients with congenital abnormalities of the kidney and urinary tract whom we studied, suggesting that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling

    Crimean-Congo hemorrhagic fever: epidemiological trends and controversies in treatment

    Get PDF
    Crimean-Congo hemorrhagic fever (CCHF) virus has the widest geographic range of all tick-borne viruses and is endemic in more than 30 countries in Eurasia and Africa. Over the past decade, new foci have emerged or re-emerged in the Balkans and neighboring areas. Here we discuss the factors influencing CCHF incidence and focus on the main issue of the use of ribavirin for treating this infection. Given the dynamics of CCHF emergence in the past decade, development of new anti-viral drugs and a vaccine is urgently needed to treat and prevent this acute, life-threatening disease
    • 

    corecore