1,292 research outputs found

    A DC-DC Step-Up mu-Power Converter for Energy Harvesting Applications, Using Maximum Power PointTracking, Based on Fractional Open Circuit Voltage

    Get PDF
    A DC-DC step-up micro power converter for solar energy harvesting applications is presented. The circuit is based on a switched-capacitorvoltage tripler architecture with MOSFET capacitors, which results in an, area approximately eight times smaller than using MiM capacitors for the 0.131mu m CMOS technology. In order to compensate for the loss of efficiency, due to the larger parasitic capacitances, a charge reutilization scheme is employed. The circuit is self-clocked, using a phase controller designed specifically to work with an amorphous silicon solar cell, in order to obtain themaximum available power from the cell. This will be done by tracking its maximum power point (MPPT) using the fractional open circuit voltage method. Electrical simulations of the circuit, together with an equivalent electrical model of an amorphous silicon solar cell, show that the circuit can deliver apower of 1132 mu W to the load, corresponding to a maximum efficiency of 66.81%

    Population coding by globally coupled phase oscillators

    Full text link
    A system of globally coupled phase oscillators subject to an external input is considered as a simple model of neural circuits coding external stimulus. The information coding efficiency of the system in its asynchronous state is quantified using Fisher information. The effect of coupling and noise on the information coding efficiency in the stationary state is analyzed. The relaxation process of the system after the presentation of an external input is also studied. It is found that the information coding efficiency exhibits a large transient increase before the system relaxes to the final stationary state.Comment: 7 pages, 9 figures, revised version, new figures added, to appear in JPSJ Vol 75, No.

    Neural responses to facial and vocal expressions of fear and disgust

    Get PDF
    Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus

    Soft capacitor fibers using conductive polymers for electronic textiles

    Full text link
    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes, and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

    BRCA1/BRCA2 rearrangements and CHEK2 common mutations are infrequent in Italian male breast cancer cases.

    Get PDF
    Male breast cancer (MBC) is a rare and poorly known disease. Germ-line mutations of BRCA2 and, to lesser extent, BRCA1 genes are the highest risk factors associated with MBC. Interestingly, BRCA2 germ-line rearrangements have been described in high-risk breast/ovarian cancer families which included at least one MBC case. Germ-line mutations of CHEK2 gene have been also implicated in inherited MBC predisposition. The CHEK2 1100delC mutation has been shown to increase the risk of breast cancer in men lacking BRCA1/BRCA2 mutations. Intriguingly, two other CHEK2 mutations (IVS2+1G > A and I157T) and a CHEK2 large genomic deletion (del9-10) have been associated with an elevated risk for prostate cancer. Here, we investigated the contribution of BRCA1, BRCA2 and CHEK2 alterations to MBC predisposition in Italy by analysing a large series of MBC cases, unselected for breast cancer family history and all negative for BRCA1/BRCA2 germ-line mutations. A total of 102 unrelated Italian MBC cases were screened for deletions/duplications of BRCA1, BRCA2 and CHEK2 by multiplex ligation-dependent probe amplification. No BRCA1, BRCA2 and CHEK2 genomic rearrangements, including the CHEK2 del9-10, were found in the series analysed. Furthermore, none of the MBC cases and 263 male population controls, also included in this study, carried the CHEK2 1100delC, IVS2+1G > A and I157T common mutations. Overall, our data suggest that screening of BRCA1/2 rearrangements is not advantageous in MBC cases not belonging to high-risk breast cancer families and that common CHEK2 mutations play an irrelevant role in MBC predisposition in Italy

    An electrochemical system for efficiently harvesting low-grade heat energy

    Get PDF
    Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low figure-of-merit and low-temperature differential. An alternative approach is to explore thermodynamic cycles. Thermogalvanic effect, the dependence of electrode potential on temperature, can construct such cycles. In one cycle, an electrochemical cell is charged at a temperature and then discharged at a different temperature with higher cell voltage, thereby converting heat to electricity. Here we report an electrochemical system using a copper hexacyanoferrate cathode and a Cu/Cu2+ anode to convert heat into electricity. The electrode materials have low polarization, high charge capacity, moderate temperature coefficients and low specific heat. These features lead to a high heat-to-electricity energy conversion efficiency of 5.7% when cycled between 10 and 60 degrees C, opening a promising way to utilize low-grade heat.open121

    Polarized distribution of HCO3- transport in human normal and cystic fibrosis nasal epithelia

    Get PDF
    The polarized distribution of HCO3− transport was investigated in human nasal epithelial cells from normal and cystic fibrosis (CF) tissues. To test for HCO3− transport via conductive versus electroneutral Cl−/HCO3− exchange (anion exchange, AE) pathways, nasal cells were loaded with the pH probe 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein and mounted in a bilateral perfusion chamber. In normal, but not CF, epithelia, replacing mucosal Cl− with gluconate caused intracellular pH (pHi) to increase, and the initial rates (ΔpH min−1) of this increase were modestly augmented (∼26 %) when normal cells were pretreated with forskolin (10 μm). Recovery from this alkaline shift was dependent on mucosal Cl−, was insensitive to the AE inhibitor 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonic acid (H2DIDS; 1.5 mm), but was sensitive to the cystic fibrosis transmembrane conductance regulator (CFTR) channel inhibitor diphenylamine-2-carboxylate (DPC; 100 μm). In contrast, removal of serosal Cl− caused pHi to alkalinize in both normal and CF epithelia. Recovery from this alkaline challenge was dependent on serosal Cl− and blocked by H2DIDS. Additional studies showed that serosally applied Ba2+ (5.0 mm) in normal, but not CF, cells induced influx of HCO3− across the apical membrane that was reversibly blocked by mucosal DPC. In a final series of studies, normal and CF cells acutely alkaline loaded by replacing bilateral Krebs bicarbonate Ringer (KBR) with Hepes-buffered Ringer solution exhibited basolateral, but not apical, recovery from an alkaline challenge that was dependent on Cl−, independent of Na+ and blocked by H2DIDS. We conclude that: (1) normal, but not CF, nasal epithelia have a constitutively active DPC-sensitive HCO3− influx/efflux pathway across the apical membrane of cells, consistent with the movement of HCO3− via CFTR; and (2) both normal and CF nasal epithelia have Na+-independent, H2DIDS-sensitive AE at their basolateral domain
    corecore