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An electrochemical system for efficiently
harvesting low-grade heat energy
Seok Woo Lee1,*, Yuan Yang2,*, Hyun-Wook Lee1, Hadi Ghasemi2, Daniel Kraemer2, Gang Chen2 & Yi Cui1,3

Efficient and low-cost thermal energy-harvesting systems are needed to utilize the

tremendous low-grade heat sources. Although thermoelectric devices are attractive, its

efficiency is limited by the relatively low figure-of-merit and low-temperature differential. An

alternative approach is to explore thermodynamic cycles. Thermogalvanic effect, the

dependence of electrode potential on temperature, can construct such cycles. In one cycle, an

electrochemical cell is charged at a temperature and then discharged at a different

temperature with higher cell voltage, thereby converting heat to electricity. Here we report an

electrochemical system using a copper hexacyanoferrate cathode and a Cu/Cu2þ anode to

convert heat into electricity. The electrode materials have low polarization, high charge

capacity, moderate temperature coefficients and low specific heat. These features lead to a

high heat-to-electricity energy conversion efficiency of 5.7% when cycled between 10 and

60 �C, opening a promising way to utilize low-grade heat.
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L
ow-grade heat sources (o100 �C) are ubiquitous, generated
in energy conversion and utilization processes1,2. Among the
methods for converting this energy to electricity,

thermoelectric (TE) materials and devices have been studied
extensively for several decades3–9. Despite recent progress,
however, the figure of merit (ZT) of thermoelectrics is limited
to 2 at high temperatures and 1.5 below 100 �C10,11. Seebeck
effect in electrochemical system is also investigated for thermal
energy harvesting in similar architectures as a TE device, but the
efficiency achieved is usually lower than 0.5% below 100 �C since
the thermopower is limited by poor ionic conductivity of
electrolyte, which is more than three orders of magnitude
smaller than the electronic conductivity in state-of-the-art TE
materials12–15. An alternative approach of electrochemical system
for thermal energy harvesting is to explore thermo-
dynamic cycle as in thermomechanical engines. Here we report
an efficient thermally regenerative electrochemical cycle (TREC)
based on the thermogalvanic effect, temperature dependence
of electrode potential. For a half-cell reaction, Aþ n e�-B, the
temperature coefficient is defined as

a ¼ @V
@T
¼ DSA;B

nF
ð1Þ

where V is the electrode potential, T is temperature, n is the
number of electrons transferred in the reaction, F is Faraday’s
constant and DSA,B is the partial molar entropy change for the
half-cell reaction in isothermal condition (see Supplementary
Note 1). This effect indicates that the voltage of a battery depends
on temperature; thus a thermodynamic cycle can be constructed
by discharging the battery at T1 and charging back at T2. If
the charging voltage at T2 is lower than the discharging voltage at
T1, net energy is produced by the voltage difference, originating
from heat absorbed at the higher temperature, similar to a
thermomechanical engine with the Carnot efficiency as the upper
limit. In practice, instead of transport property limited in TE
devices, the efficiency of TREC is limited by the heat capacity of
materials and effectiveness of heat exchangers16. The concept of
TREC was developed a few decades ago for high-temperature
applications (500–1,500 �C) and showed efficiency of 40–50% of
the Carnot limit. But, low-temperature TREC did not received as
much attention since electrode materials with low polarization
and high charge capacity at low temperature were limited17.
Hammond and William18 tested an aqueous redox couple for
low-temperature solar-thermal applications, but the precipitation
of reactants, large internal resistance and poor solubility of active
redox species causing large heat capacity of the system prevented
them from reporting device operational characteristics and
measuring the device efficiency, although a high efficiency was
theoretically projected based on the measured open-circuit
voltage OCV and 100% heat recuperation assumption. The
recent development of highly reversible electrode materials with
very low polarization loss during the research of rechargeable
batteries has now made it possible for us to exploit the TREC
concept in a new way.

Here we present a high-efficiency TREC for harvesting low-
grade heat energy by employing solid copper hexacyanoferrate
(CuHCF) as a positive electrode and Cu/Cu2þ as a negative
electrode in an aqueous electrolyte. The fast kinetics, high charge
capacity, high-temperature coefficient (a) and low heat capacity
of these materials allow the system to operate with excellent
efficiency.

Results
Working principle of TREC. To harvest thermal energy, the
entire device undergoes a thermal cycle containing four processes:
heating up, charging, cooling down and discharging (Fig. 1a).

This cycle is also plotted on a temperature–entropy (T–S)
diagram to clarify the thermodynamics (Fig. 1b). In process 1,
the cell is in the discharged state and heated from TL to TH

(low to high temperature) at open circuit. Since CuHCF
has a negative a and Cu/Cu2þ has a positive a, the OCV of the
full cell decreases during this process. The cell is then charged
at a low voltage at TH in process 2, and the entropy of the
cell increases through heat absorption during the electrochemical
reaction. In process 3, the cell is disconnected and cooled
from TH to TL, and thus the OCV increases. In the final process,
the cell is discharged at a higher voltage at TL, and the entropy
of the cell decreases through the ejection of heat into the
environment. After the cycle, the system returns to the
original discharged state at TL. Since the charging voltage is lower
than the discharging voltage, net work (W) is extracted as the
difference between charging and discharging energy. This is the
opposite of the consumption of energy due to electrochemical
hysteresis during a typical charge/discharge cycle of a battery,
since the charging energy here is partially provided by heat
(Supplementary Fig. 1). Such a conversion process of thermal
energy into electrochemical energy requires that the electro-
chemical voltage hysteresis during charge/discharge at a fixed
temperature is much smaller than the voltage difference caused
by temperature change, calling for the highly reversible electro-
chemical electrodes.
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Figure 1 | Working principle of TREC for thermal energy harvesting.

(a) Schematic view of thermal cycling: process 1, heating up the cell;

process 2, charging at high temperature; process 3, cooling down the cell;

process 4, discharging at low temperature. (b) Temperature–entropy

(T–S) diagram of thermal cycling assuming a temperature range between

TL and TH. The theoretical energy gained over one cycle is the area

of the loop determined by the temperature difference and entropy change.
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The efficiency of the system (Z) is calculated as the net work
(W) divided by the thermal energy input. If the enthalpy change
DH and the entropy change DS are the same at TH and TL, which
is a good approximation when DT¼ (TH�TL) is small, the
maximum W is DTDS (Fig. 1b). The energy input to complete the
cycle includes two parts: the heat absorbed at TH (QH¼THDS)
and the external heat required to raise the temperature of the
system (QHX). As part of heat rejected from the cooling process
can be used for the heating process through heat recuperation,
QHX can be expressed as QHX¼ (1� ZHX)CpDT, where Cp is the
total heat capacity of the electrochemical cell and ZHX is the
efficiency of the heat recuperation (See Supplementary Fig. 2 and
Supplementary Note 2). Consequently Z can be expressed as:

Z ¼ W
QHþQHX

¼ DTDS� Eloss

THDSþð1� ZHXÞCpDT
ð2Þ

where Eloss is the energy loss due to the cell electrical resistance.
Note that DTDS¼ aQcDT, where Qc is the charge capacity of the
battery and a is the temperature coefficient of the electrochemical
cell. The efficiency can be written as

Z ¼ Zc
1� IðRHþRLÞ= aj jDT
1þ Zcð1� ZHXÞ= Yj j ð3Þ

where I is the current used in discharging and charging. RH and
RL are the internal resistance at TH and TL, respectively. Y¼ aQc/
Cp, is a dimensionless parameter to describe the requirements of
the system for high efficiency. A thorough derivation of efficiency
is presented in Supplementary Notes 3 and 4. If only the
contributions of the electrode materials are considered, and it is
assumed that both electrodes have the same properties except
opposite signs of the temperature coefficient, Y¼ aqc/cp and it is
defined as the figure of merit of an electrode material for
TREC, but not thermocells. Here, qc is the specific charge capacity
and cp is the specific heat of an electrode. Consequently, it
is clear that a higher temperature coefficient (a), a higher specific
charge capacity (qc) and a smaller specific heat (cp) lead to higher
efficiency for heat-to-electricity conversion. In addition, low-
voltage polarization and effective heat recuperation can
also improve the efficiency. The value of Y for individual
materials can be negative or positive, depending on the sign of the
temperature coefficient, although efficiency expression takes its
absolute value.

Electrochemical system for harvesting thermal energy.
Considering these requirements, we have selected solid CuHCF as
the positive electrode for the TREC because of its negative
temperature coefficient (� 0.36 mV K� 1), high specific charge
capacity (60 mAh g� 1) compared with redox couples in solution,
relatively low specific heat (1.07 JK� 1 g� 1), and ultra-low voltage
hysteresis19–21. The corresponding figure of merit Y is as high as
� 0.073. For the negative electrode, a copper metal immersed in
3 M Cu(NO3)2 aqueous solution is selected because of the high
positive temperature coefficient (0.83 mV K� 1) of Cu/Cu2þ and
its large specific charge capacity (825 mAh g� 1 Cu). Although the
corresponding Y for Cu alone is as high as 6.55, the electrolyte is
an active component in the full cell and its contribution to heat
capacity is considerable. Including the electrolytes, the
corresponding Y are � 0.031 and 0.125 for CuHCF/6 M NaNO3

and Cu/3 M Cu2þ , respectively. Y for the full cell reaches � 0.068
with both electrolyte and electrode considered (see Supplementary
Table 1 and Supplementary Note 5). The relevant redox reactions
at each electrode are Na0.71Cu[FeIII(CN)6]0.72þ a(Naþ þ e� )¼
Na0.71þ aCu[FeIII(CN)6]0.72� a[FeII(CN)6]0.72þ a and Cu2þ þ
2e� ¼Cu. The temperature coefficient of each electrode was
tested by measuring the OCV while varying temperature from 10

to 70 �C. Figure 2a shows the OCV change of the CuHCF
electrode (50% state of charge), the Cu/Cu2þ (3 M) electrode and
the full cell for each 10-�C increment when the voltage is set at 0 V
at 10 �C. The potentials of both electrodes exhibit a linear
dependence on temperature, indicating a constant a in the
temperature window tested. The measured temperature
coefficients of CuHCF, Cu/Cu2þ and the full cell are � 0.36,
0.83 and � 1.20 mV K� 1, respectively. These experimental values
match with the expected ones. Figure 2b shows the voltage versus
time plot of the full cell over one thermal cycle between 10 and
60 �C when the specific current density is 7.2 mA g� 1 with respect
to active materials (All current, energy and power densities are
based on the mass of active materials, including CuHCF,
electrolyte for Naþ , copper and water for Cu2þ in this paper.).
In process 1, the OVC of the cell decreases from 0.406 to 0.337 V
as the temperature increases from 10 to 60 �C. Then the cell is
charged for 250 min at 60 �C in process 2 and the voltage
gradually increases. In process 3, the OCV of the cell increases
from 0.613 to 0.679 V as the temperature decreases back to 10 �C.
The cell is discharged in process 4 at 10 �C until the voltage
reaches the initial voltage of the discharged state at the beginning
of process 1. The corresponding plot of voltage against specific
charge capacity based on the mass of CuHCF is shown in Fig. 2c.
The average charging voltage is 59.0 mV lower than the average-
discharging voltage and thus electrical energy is generated with a
net energy density of 5.2 J g� 1. The voltage spikes at the beginning
of each process are electrochemical in nature and are due to
overpotential and internal resistance. At the end of process 4,
the discharging curve forms nearly perfect closed loop with
only tiny loss of electric charges. The Coulombic efficiency
(ratio of the amount of charge extracted during discharging to
that of adding in during charging) for this cycle is adequately
high B98.6%.

Efficiency of TREC. The efficiency of the cycle is estimated based
on equation (2). Effects of internal resistance and Coulombic
efficiency are both taken into account. Details of calculations are
shown in Supplementary Note 4 and Supplementary Fig. 3.
Figure 3a plots the cycle efficiency versus the efficiency of heat
recuperation when cycled between 10 and 60 �C. The current
density is 7.2 mA g� 1. When heat recuperation is not used, the
cycle efficiency is 3.7%. The final system efficiency could be much
higher when heat recuperation is used, depending on the effi-
ciency of the heat recuperation system (ZHX). We have designed
and tested two heat recuperation schemes using dummy cells and
commercial battery cells, since the current laboratory cell is too
small to match the heat exchanger size. The test combined with
thermal modelling shows that heat recuperation efficiency (ZHX)
between 45–80% can be achieved (details are shown in
Supplementary Note 6). In the following, we will assume 50%
heat recuperation efficiency to discuss the cycle efficiency, which
we believe is a conservative number. With 50% heat recuperation
efficiency, the corresponding cycle efficiency increases to 5.7%.
Figure 3b shows the efficiency at various cycling conditions with
TH varying between 40 and 70 �C and TL fixed at 10 �C. At a
current density of 7.2 mA g� 1 and ZHX¼ 50%, the cycle effi-
ciencies are 2.9% for TH¼ 40 �C, 4.8% for 50 �C, 5.7% for 60 �C
and 5.5% for 70 �C. The efficiency becomes higher as TH increases
because of larger voltage difference between the charging and
discharging curves and faster kinetics at higher temperature.
However, this tendency changes between a TH of 60 and 70 �C,
since the Coulombic efficiency of CuHCF starts to decrease at
these temperatures. When the temperature is higher than 80 �C,
significant decrease of Coulombic efficiency leads to rapid drop of
the cycle efficiency (see Supplementary Fig. 4). When the current
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density increases to 17.9 mA g� 1 for higher power output, the
cycle efficiencies are still as high as 1.9% for TH¼ 40 �C, 3.2% for
50 �C, 5.0% for 60 �C and 5.4% for 70 �C despite the larger

overpotential. The efficiency is much higher than previous reports
on thermogalvanic cells (Supplementary Table 2).

Long-term cycling. The cycling performance of the thermal
energy-harvesting system is shown in Fig. 4a. TH and TL are set to
50 �C and 20 �C to represent widely accessible temperatures of
waste heat and room temperature, respectively. The current
density is 17.9 mA g� 1. The energy density reaches 1.26 J g� 1 in
the initial cycle with an efficiency of 1.8%. The average efficiency
is 1.7% (ZHX¼ 50%). Figure 4b compares the full-cell voltage
versus specific capacity of CuHCF for the 1st and 40th cycle.
A slight shift of the loop is observed, but there is no significant
change in the overall shape. In addition, the cycling performance
of CuHCF at higher temperature is confirmed by long-term
galvanostatic cycling of a CuHCF electrode at 70 �C. At this
temperature, the capacity decay is only 9.1% over 500 cycles
(Supplementary Fig. 5). This result signifies that this TREC for
thermal energy harvesting is expected to have stable cycling with
further optimization.

Discussion
Since TE devices are major candidates for waste heat recovery, it
is useful to point out the differences between TE devices and
TREC. The ZT of TE materials are determined by transport
properties, while the thermogalvanic figure of merit Y is
determined by thermodynamic properties. TE devices can have
high-power density, provided that one can manage heat flow on
both hot and the cold sides to create the needed temperature
difference, while TREC has relatively low-power density. Its
power density depends on applied current density and voltage
gap between charging and discharging of a cycle. We have
estimated a power density of 1.2 mW g� 1 for cell operating
between 10–80 �C at current density of 58.5 mA g� 1 with a
1-hour cycling time, based on the mass of all active materials and
electrolytes (see Supplementary Fig. 6). Further improvement in
power density can be realized by optimizing device configuration,
utilizing porous copper electrode, and exploring new system
with fast kinetics and large temperature coefficient (see
Supplementary Note 7). On the other hand, due to its constant
temperature operation, thermal management challenges, which
are crucial for low-grade waste heat utilization, can be easier, as
we have demonstrated in the heat recuperation testing
(Supplementary Figs 7–13 and Supplementary Table 3). With
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such an understanding first, we can now convert the efficiency
achieved in TREC into familiar ZT in TE materials. The estimated
ZT is 3.5 for the efficiency of 5.7% when temperature is varied
from 10 to 60 �C, current density is 7.2 mA g� 1 and ZHX¼ 50% is
considered in the calculation. When the current density increases
to 17.9 mA g� 1 (close to current density for maximum power
density), the efficiency is 5.0% and the estimated ZT is 2.7.

In this study, a thermally regenerative electrochemical system
with CuHCF and Cu/Cu2þ electrodes is developed for low-grade
thermal energy harvesting. The electrode materials have large
temperature coefficients, high charge capacity, low specific heat
and small hysteresis. These properties lead to a high thermo-
galvanic figure of merit (Y) for the electrode materials and thus
excellent heat-to-electricity conversion efficiency: a cycle effi-
ciency of 3.7% between 10 and 60 �C without any heat
recuperation and 5.7% when 50% heat recuperation is assumed.
The achieved cycle efficiency still has room to improve by
improving heat recuperation efficiency and reducing the amount
of electrolyte through increasing the concentration of salts22,23.
Furthermore, the efficiency improvement in this system is
possible by searching for materials with higher figure of merit
and smaller hysteresis, especially solid electrode materials with a
positive temperature coefficient as a counter electrode to CuHCF.
In addition, further optimization is needed to improve the power

output while maintaining high efficiency of thermal energy
harvesting. Our work points to the great potential of TREC for
utilizing ubiquitous low-temperature heat sources.

Methods
Material synthesis and electrode preparation. CuHCF was synthesized by
a simple co-precipitation method. In total, 40 mM of Cu(NO3)2 and 20 mM of
K3Fe(CN)6 (Sigma Aldrich) were prepared in 120 ml of distilled water, then both
solutions were simultaneously added in drops into 60 ml of deionized-water under
vigorous stirring. A yellowish green precipitate formed during the precipitation.
Then, the solid precipitate was filtered and washed several times with deionized-
water. Afterward, the precipitate was dried in vacuum oven at 40 �C for 12 h. The
diameter of as-formed particles is typically below 100 nm (Supplementary Fig. 14)
To prepare electrodes, a mixture of 70% wt/wt CuHCF, 20% wt/wt amorphous
carbon (Timcal Super P Li) and 10% wt/wt polyvinylidene fluoride (Kynar HSV
900) was grounded by hand. 1-methyl-2-pyrrolidinone was added in the mixture to
form slurry, which was spread on carbon cloth current collector (Fuel Cell Earth).
The mass loading of CuCHF was between 2 and 3 mg on area of about 0.25 cm2.

Electrochemical characterizations. TREC is demonstrated as form of a flooded
beaker cell as shown in Supplementary Fig. 3B. CuHCF on carbon cloth
(B0.25 cm2) is connected to working electrode. Cu foil (B4 cm2) is connected to
counter electrode. In total, 6 M NaNO3 and 3 M Cu(NO3)2 electrolytes are used for
CuHCF and Cu electrodes, respectively. These electrolytes are separated by three
anion exchange membranes (Selemion DSV, AGC engineering, LTD, Japan).
Ag/AgCl in saturated KCl solution is located between the membranes as a reference
electrode. Electrochemical test of the cell is performed by a potentiostat with 50 mV
resolution (VM3, BioLogic). During the measurement, recording voltage was
fluctuating ±0.2 mV due to noise. The temperature measurement uncertainty is
estimated to be ±0.2 �C as we wait until equilibrium in an environment chamber
(BTU-133, ESPEC North America, INC.), while the precision of the thermometer is
±0.1 �C.’ The overall relative uncertainty in efficiency is estimated to be less than
3%, which corresponds to less than 0.2% in the absolute conversion efficiency.

Specific heat measurement. The specific heat (cp) of the CuHCF was measured
by differential scanning calorimetry test after drying the sample at 40B50 �C for
more than 24 h. The measurements were carried out by differential scanning
calorimetry Q100 (TA instrument). The measurement range was 20–70 �C with the
ramping rate of 5 �C min� 1. The heat flow curve is shown in Supplementary
Fig. 15. The calculated cp of CuHCF is 1.07 J g� 1 K� 1.

Efficiency calculation. The thermal-to-electricity efficiency is based on experi-
mental charge/discharge curves of TREC cells. The specific heat is calculated based
on experimental measurements. More details can be found in Supplementary
Notes 3 and 4.
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