3,125 research outputs found

    Antiretroviral Therapy: Use in Sub-Saharan Africa and Common Obstacles Encountered

    Get PDF
    HIV has become one of the most feared diseases in the world. It has claimed millions of lives, especially in Sub-Saharan Africa. Although it is impossible to cure, studies have shown that using antiretroviral therapy (ART) can greatly improve quality of life and decrease viral load. There are four main classes of ART—NRTIs, NNRTIs, protease inhibitors, and fusion inhibitors. Although access to ART is improving, it is vital that its use is increased in Sub-Saharan Africa, where the prevalence can be as high as 33%. This thesis explores the current need of ART in Sub-Saharan Africa, as well as the existing coverage. In addition, it addresses the obstacles preventing ART distribution and use—both provider and patient-related. Provider-related obstacles include limited availability of drugs, total cost, lack of healthcare staff and facilities, lack of organization, and government regulations. Patient-related obstacles include cost, transportation, geographic proximity to healthcare facilities, side effects and hunger, pill burden, hospital-related factors, cultural beliefs, social stigma, lack of adequate counseling, and drug resistance. It is important to be proactive, assess ART delivery, consider suggestions for improvement, and tackle the HIV epidemic

    Validity of the Adiabatic Approximation

    Full text link
    We analyze the validity of the adiabatic approximation, and in particular the reliability of what has been called the "standard criterion" for validity of this approximation. Recently, this criterion has been found to be insufficient. We will argue that the criterion is sufficient only when it agrees with the intuitive notion of slowness of evolution of the Hamiltonian. However, it can be insufficient in cases where the Hamiltonian varies rapidly but only by a small amount. We also emphasize the distinction between the adiabatic {\em theorem} and the adiabatic {\em approximation}, two quite different although closely related ideas.Comment: 4 pages, 1 figur

    Search For Oxygen in Cool DQ White Dwarf Atmospheres

    Get PDF
    We report new infrared spectroscopic observations of cool DQ white dwarfs by using Coolspec on the 2.7m Harlan-Smith Telescope. DQs have helium-rich atmospheres with traces of molecular carbon thought to be the result of convective dredge-up from their C/O interiors. Recent model calculations predict that oxygen should also be present in DQ atmospheres in detectable amounts. Our synthetic spectra calculations for He-rich white dwarfs with traces of C and O indicate that CO should be easily detected in the cool DQ atmospheres if present in the expected amounts. Determination of the oxygen abundance in the atmosphere will reveal the C/O ratio at the core/envelope boundary, constraining the important and uncertain ^{12}C(alpha,gamma)^{16}O reaction rate.Comment: 2 pages, 2 figures, to appear in proceedings of the 13th European Workshop on White Dwarf

    Sonic levitation apparatus

    Get PDF
    A sonic levitation apparatus is disclosed which includes a sonic transducer which generates acoustical energy responsive to the level of an electrical amplifier. A duct communicates with an acoustical chamber to deliver an oscillatory motion of air to a plenum section which contains a collimated hole structure having a plurality of parallel orifices. The collimated hole structure converts the motion of the air to a pulsed. Unidirectional stream providing enough force to levitate a material specimen. Particular application to the production of microballoons in low gravity environment is discussed

    Breaking the Gridlock in Aboriginal Education

    Get PDF

    Dual Fronts Propagating into an Unstable State

    Full text link
    The interface between an unstable state and a stable state usually develops a single confined front travelling with constant velocity into the unstable state. Recently, the splitting of such an interface into {\em two} fronts propagating with {\em different} velocities was observed numerically in a magnetic system. The intermediate state is unstable and grows linearly in time. We first establish rigorously the existence of this phenomenon, called ``dual front,'' for a class of structurally unstable one-component models. Then we use this insight to explain dual fronts for a generic two-component reaction-diffusion system, and for the magnetic system.Comment: 19 pages, Postscript, A

    A Quantitative, Time-Dependent Model of Oxygen Isotopes in the Solar Nebula: Step one

    Get PDF
    The remarkable discovery that oxygen isotopes in primitive meteorites were fractionated along a line of slope I rather than along the typical slope 0,52 terrestrial fractionation line occurred almost 40 years ago, However, a satisfactory, quantitative explanation for this observation has yet to be found, though many different explanations have been proposed, The first of these explanations proposed that the observed line represented the final product produced by mixing molecular cloud dust with a nucleosynthetic component, rich in O-16, possibly resulting from a nearby supernova explosion, Donald Clayton suggested that Galactic Chemical Evolution would gradually change the oxygen isotopic composition of the interstellar grain population by steadily producing O-16 in supernovae, then producing the heavier isotopes as secondary products in lower mass stars, Thiemens and collaborators proposed a chemical mechanism that relied on the availability of additional active rotational and vibrational states in otherwise-symmetric molecules, such as CO2, O3 or SiO2, containing two different oxygen isotopes and a second, photochemical process that suggested that differential photochemical dissociation processes could fractionate oxygen , This second line of research has been pursued by several groups, though none of the current models is quantitative

    Modeling Nucleation and Grain Growth in the Solar Nebula: Initial Progress Report

    Get PDF
    The primitive solar nebula was a violent and chaotic environment where high energy collisions, lightning, shocks and magnetic re-connection events rapidly vaporized some fraction of nebular dust, melted larger particles while leaving the largest grains virtually undisturbed. At the same time, some tiny grains containing very easily disturbed noble gas signatures (e.g., small, pre-solar graphite or SiC particles) never experienced this violence, yet can be found directly adjacent to much larger meteoritic components (chondrules or CAIs) that did. Additional components in the matrix of the most primitive carbonaceous chondrites and in some chondritic porous interplanetary dust particles include tiny nebular condensates, aggregates of condensates and partially annealed aggregates. Grains formed in violent transient events in the solar nebula did not come to equilibrium with their surroundings. To understand the formation and textures of these materials as well as their nebular abundances we must rely on Nucleation Theory and kinetic models of grain growth, coagulation and annealing. Such models have been very uncertain in the past: we will discuss the steps we are taking to increase their reliability
    • …
    corecore