52 research outputs found

    Association of symptoms of insomnia and sleep parameters among kidney transplant recipients

    Get PDF
    Objective: Insomnia complaints are frequent among kidney transplant (kTx) recipients and are associated with fatigue, depression, lower quality of life and increased morbidity. However, it is not known if subjective insomnia symptoms are associated with objective parameters of sleep architecture. Thus, we analyze the association between sleep macrostructure and EEG activity versus insomnia symptoms among kTx recipients. Methods: Participants (n1 = 100) were selected from prevalent adult transplant recipients (n0 = 1214) followed at a single institution. Insomnia symptoms were assessed by the Athens Insomnia Scale (AIS) and standard overnight polysomnography was performed. In a subgroup of patients (n2 = 56) sleep microstructure was also analyzed with power spectral analysis. Results: In univariable analysis AIS score was not associated with sleep macrostructure parameters (sleep latency, total sleep time, slow wave sleep, wake after sleep onset), nor with NREM and REM beta or delta activity in sleep microstructure. In multivariable analysis after controlling for covariables AIS score was independently associated with the proportion of slow wave sleep (β = 0.263; CI: 0.026–0.500) and REM beta activity (β = 0.323; CI = 0.041–0.606) (p < 0.05 for both associations). Conclusions: Among kTx recipients the severity of insomnia symptoms is independently associated with higher proportion of slow wave sleep and increased beta activity during REM sleep but not with other parameters sleep architecture. The results suggest a potential compensatory sleep protective mechanism and a sign of REM sleep instability associated with insomnia symptoms among this population

    Presence of Anti-Microbial Antibodies in Liver Cirrhosis – A Tell-Tale Sign of Compromised Immunity?

    Get PDF
    Bacterial translocation plays important role in the complications of liver cirrhosis. Antibody formation against various microbial antigens is common in Crohn's disease and considered to be caused by sustained exposure to gut microflora constituents. We hypothesized that anti-microbial antibodies are present in patients with liver cirrhosis and may be associated with the development of bacterial infections.<0.001, OR:2.02) by Cox-regression analysis.The present study suggests that systemic reactivity to microbial components reflects compromised mucosal immunity in patients with liver cirrhosis, further supporting the possible role of bacterial translocation in the formation of anti-microbial antibodies

    Ion acceleration with few cycle relativistic laser pulses from foil targets

    Full text link
    Ion acceleration resulting from the interaction of 11 fs laser pulses of ~35 mJ energy with ultrahigh contrast (<10^-10), and 10^19 W/cm^2 peak intensity with foil targets made of various materials and thicknesses at normal (0-degree) and 45-degree laser incidence is investigated. The maximum energy of the protons accelerated from both the rear and front sides of the target was above 1 MeV. A conversion efficiency from laser pulse energy to proton beam is estimated to be as high as ~1.4 % at 45-degree laser incidence using a 51 nm-thick Al target. The excellent laser contrast indicates the predominance of vacuum heating via the Brunels effect as an absorption mechanism involving a tiny pre-plasma of natural origin due to the Gaussian temporal laser pulse shape. Experimental results are in reasonable agreement with theoretical estimates where proton acceleration from the target rear into the forward direction is well explained by a TNSA-like mechanism, while proton acceleration from the target front into the backward direction can be explained by the formation of a charged cavity in a tiny pre-plasma. The exploding Coulomb field from the charged cavity also serves as a source for forward-accelerated ions at thick targets.Comment: 12 pages, 7 figures

    Predictions for cold nuclear matter effects in p plus Pb collisions at root SNN =8.16 TeV

    Get PDF
    Predictions for cold nuclear matter effects on charged hadrons, identified light hadrons, quarkonium and heavy flavor hadrons, Drell-Yan dileptons, jets, photons, gauge bosons and top quark pairs produced in p+Pb collisions at, root S-NN = 8.16 TeV are compiled and, where possible, compared to each other. Predictions of the normalized ratios of p+Pb to p+ p cross sections are also presented for most of the observables, providing new insights into the expected role of cold nuclear matter effects. In particular, the role of nuclear parson distribution functions on particle production can now be probed over a wider range of phase space than ever before. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    High prevalence of germline STK11 mutations in Hungarian Peutz-Jeghers Syndrome patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peutz-Jeghers syndrome (PJS) is a rare autosomal dominantly inherited disease characterized by gastrointestinal hamartomatous polyposis and mucocutaneous pigmentation. The genetic predisposition for PJS has been shown to be associated with germline mutations in the <it>STK11</it>/<it>LKB1 </it>tumor suppressor gene. The aim of the present study was to characterize Hungarian PJS patients with respect to germline mutation in <it>STK11</it>/<it>LKB1 </it>and their association to disease phenotype.</p> <p>Methods</p> <p>Mutation screening of 21 patients from 13 PJS families were performed using direct DNA sequencing and multiplex ligation-dependent probe amplification (MLPA). Comparative semi-quantitative sequencing was applied to investigate the mRNA-level effects of nonsense and splice-affecting mutations.</p> <p>Results</p> <p>Thirteen different pathogenic mutations in <it>STK11</it>, including a high frequency of large genomic deletions (38%, 5/13), were identified in the 13 unrelated families studied. One of these deletions also affects two neighboring genes (<it>SBNO2 </it>and <it>GPX4</it>), located upstream of <it>STK11</it>, with a possible modifier effect. The majority of the point mutations (88%, 7/8) can be considered novel. Quantification of the <it>STK11 </it>transcript at the mRNA-level revealed that the expression of alleles carrying a nonsense or frameshift mutation was reduced to 30-70% of that of the wild type allele. Mutations affecting splice-sites around exon 2 displayed an mRNA processing pattern indicative of co-regulated splicing of exons 2 and 3.</p> <p>Conclusions</p> <p>A combination of sensitive techniques may assure a high (100%) <it>STK11 </it>mutation detection frequency in PJS families. Characterization of mutations at mRNA level may give a deeper insight into the molecular consequences of the pathogenic mutations than predictions made solely at the genomic level.</p

    A Role for SKN-1/Nrf in Pathogen Resistance and Immunosenescence in Caenorhabditis elegans

    Get PDF
    A proper immune response ensures survival in a hostile environment and promotes longevity. Recent evidence indicates that innate immunity, beyond antimicrobial effectors, also relies on host-defensive mechanisms. The Caenorhabditis elegans transcription factor SKN-1 regulates xenobiotic and oxidative stress responses and contributes to longevity, however, its role in immune defense is unknown. Here we show that SKN-1 is required for C. elegans pathogen resistance against both Gram-negative Pseudomonas aeruginosa and Gram-positive Enterococcus faecalis bacteria. Exposure to P. aeruginosa leads to SKN-1 accumulation in intestinal nuclei and transcriptional activation of two SKN-1 target genes, gcs-1 and gst-4. Both the Toll/IL-1 Receptor domain protein TIR-1 and the p38 MAPK PMK-1 are required for SKN-1 activation by PA14 exposure. We demonstrate an early onset of immunosenescence with a concomitant age-dependent decline in SKN-1-dependent target gene activation, and a requirement of SKN-1 to enhance pathogen resistance in response to longevity-promoting interventions, such as reduced insulin/IGF-like signaling and preconditioning H2O2 treatment. Finally, we find that wdr-23(RNAi)-mediated constitutive SKN-1 activation results in excessive transcription of target genes, confers oxidative stress tolerance, but impairs pathogen resistance. Our findings identify SKN-1 as a novel regulator of innate immunity, suggests its involvement in immunosenescence and provide an important crosstalk between pathogenic stress signaling and the xenobiotic/oxidative stress response

    Endoscopic sphincterotomy for delaying choLecystectomy in mild acute biliarY pancreatitis (EMILY study): Protocol of a multicentre randomised clinical trial

    Get PDF
    Introduction: According to the literature, early cholecystectomy is necessary to avoid complications related to gallstones after an initial episode of acute biliary pancreatitis (ABP). A randomised, controlled multicentre trial (the PONCHO trial) revealed that in the case of gallstone-induced pancreatitis, early cholecystectomy was safe in patients with mild gallstone pancreatitis and reduced the risk of recurrent gallstone-related complications, as compared with interval cholecystectomy. We hypothesise that carrying out a sphincterotomy (ES) allows us to delay cholecystectomy, thus making it logistically easier to perform and potentially increasing the efficacy and safety of the procedure. Methods/Design: EMILY is a prospective, randomised, controlled multicentre trial. All patients with mild ABP, who underwent ES during the index admission or in the medical history will be informed to take part in EMILY study. The patients will be randomised into two groups: (1) early cholecystectomy (within 6 days after discharge) and (2) patients with delayed (interval) cholecystectomy (between 45 and 60 days after discharge). During a 12-month period, 93 patients will be enrolled from participating clinics. The primary endpoint is a composite endpoint of mortality and recurrent acute biliary events (that is, recurrent ABP, acute cholecystitis, uncomplicated biliary colic and cholangitis). The secondary endpoints are organ failure, biliary leakage, technical difficulty of the cholecystectomy, surgical and other complications

    Genome Comparisons of the Fission Yeasts Reveal Ancient Collinear Loci Maintained by Natural Selection

    No full text
    Fission yeasts have a unique life history and exhibit distinct evolutionary patterns from other yeasts. Besides, the species demonstrate stable genome structures despite the relatively fast evolution of their genomic sequences. To reveal what could be the reason for that, comparative genomic analyses were carried out. Our results provided evidence that the structural and sequence evolution of the fission yeasts were correlated. Moreover, we revealed ancestral locally collinear blocks (aLCBs), which could have been inherited from their last common ancestor. These aLCBs proved to be the most conserved regions of the genomes as the aLCBs contain almost eight genes/blocks on average in the same orientation and order across the species. Gene order of the aLCBs is mainly fission-yeast-specific but supports the idea of filamentous ancestors. Nevertheless, the sequences and gene structures within the aLCBs are as mutable as any sequences in other parts of the genomes. Although genes of certain Gene Ontology (GO) categories tend to cluster at the aLCBs, those GO enrichments are not related to biological functions or high co-expression rates, they are, rather, determined by the density of essential genes and Rec12 cleavage sites. These data and our simulations indicated that aLCBs might not only be remnants of ancestral gene order but are also maintained by natural selection
    corecore